
COMPUTABILITY AND COMPLEXITY TUTORIAL 13

Tutorial 13

Exercise 1 (compulsory)
Prove that the class NP is closed under union, intersection, concatenation and Kleene star. Is the class NP
closed also under complement?

Solution:
It is an open problem whether NP is closed under complement or not. The proofs for the remaining four
language operations can go as follows. Assume that L1, L2 ∈ NP. This means that there are nondetermin-
istic deciders M1 and M2 such that M1 decides L1 in nondeterministic time O(nk) and M2 deciders L2 in
nondeterministic time O(n`). We want to show that

1. there is a nondeterministic poly-time decider M such that L(M) = L1 ∩ L2, and

2. there is a nondeterministic poly-time decider M such that L(M) = L1 ∪ L2, and

3. there is a nondeterministic poly-time decider M such that L(M) = L1 ◦ L2, and

4. there is a nondeterministic poly-time decider M such that L(M) = L∗1.

Now we provide the four machines M for the different operations. The constructions are the standard
ones, the additional part is the complexity analysis of the running time. Note that we can use the power of
nondeterministic choices to make the constructions very simple.

1. Intersection:
M = ”On input w:
1. Run M1 on w. If M1 rejected then reject.
2. Else run M2 on w. If M2 rejected then reject.
3. Else accept.”

Clearly, the longest branch in any computation tree on input w of length n is O(nmax{k,`}). So M is
a poly-time nondeterministic decider for L1 ∩ L2.

2. Union:
M = ”On input w:
1. Run M1 on w. If M1 accepted then accept.
2. Else run M2 on w. If M2 accepted then accept.
3. Else reject.”

Clearly, the longest branch in any computation tree on input w of length n is O(nmax{k,`}). So M is
a poly-time nondeterministic decider for L1 ∪ L2. Note that in our case, we do not have the run M1

and M2 in parallel, as it was necessary e.g. in the proof that recognizable languages are closed under
union. Another possible construction would be to nondeterministically choose either M1 or M2 and
simulate only the selected machine.

3. Concatenation:
M = ”On input w:
1. Nondeterministically split w into w1, w2 such that w = w1w2.
2. Run M1 on w1. If M1 rejected then reject.
3. Else run M2 on w2. If M2 rejected then reject.
4. Else accept.”

Clearly, the longest branch in any computation tree on input w of length n is still O(nmax{k,`})
because step 1. takes only O(n) steps on e.g. a two tape TM. So M is a poly-time nondeterministic
decider for L1 ◦ L2.

1

COMPUTABILITY AND COMPLEXITY TUTORIAL 13

4. Kleene star:
M = ”On input w:
1. If w = ε then accept.
2. Nondeterministically select a number m such that 1 ≤ m ≤ |w|.
3. Nondeterministically split w into m pieces such that w = w1w2 . . . wm.
4. For all i, 1 ≤ i ≤ m: run M1 on wi. If M1 rejected then reject.
5. Else (M1 accepted all wi, 1 ≤ i ≤ m), accept.”

Observe that steps 1. and 2. take time O(n), because the size of the number m is bounded by n
(the length of the input). Step 3. is also doable in polynomial time (e.g. by nondeterministically
inserting m separation symbols # into the input string w). In step 4. the for loop is run at most n
times and every run takes at most O(nk). So the total running time is O(nk+1). This means that M
is a poly-time nondeterministic decider for L∗1.

Exercise 2 (compulsory)
Consider the language A = {anbn | n ≥ 0}, which is a language in P. We will now try to show that
VERTEX-COVER ≤P A. The reduction is

f(〈G, k〉) =
{
aabb if G has a vertex cover of size k
aab otherwise

Since VERTEX-COVER is NP-complete, VERTEX-COVER ≤P A and A ∈ P, we get that P=NP.

Explain carefully what is the flaw is in this ”proof”.

Solution:
The problem with this ”proof” is that the reduction is not known to be computable in polynomial time. For
this to be the case, we would have to prove that it is polynomial-time decidable if G has a vertex cover of
size k. This is an open problem but many scientists think that it is indeed not the case (no such poly-time
algorithm exists), though there is no proof of this statement.

Exercise 3 (compulsory)
A Boolean formula φ is a tautology if every truth assignment will cause φ to evaluate to true. Consider the
problem

”Given a formula φ, is it the case that φ is not a tautology?”

1. Express this problem as a language called NOTA.

2. Show that NOTA is NP-complete.

Solution:
1. The language is:

NOTA = {〈φ〉 | φ is a Boolean formula which is not a tautology}

2. First note that a formula is not tautology exactly when some truth assignment causes it to evaluate to
false. We now show that NOTA ∈ NP and that SAT ≤P NOTA.

• Here is a polynomial-time NTM deciding NOTA:

”On input 〈φ〉 :

2

COMPUTABILITY AND COMPLEXITY TUTORIAL 13

1. Guess a truth assignment.
2. Evaluate φ with this truth assignment.
3. If φ evaluates to false, then accept, else reject.”

Let n = |φ|. This means that φ has at most n distinct variables; guessing truth values thus
requires at most O(n) steps. Evaluating φ can be done by scanning repeatedly φ from left to
right. This, too, requires only polynomially many steps. Consequently, the whole decider runs
in nondeterministic polynomial time.

• We show that SAT ≤P NOTA by giving the following reduction:

”On input 〈φ〉:
1. Output 〈¬φ〉.”

Clearly, this reduction is computable in polynomial time and φ is not a tautology if and only if
¬φ is satisfiable.

Exercise 4 (compulsory)
Consider the following formula φ in cnf.

(x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x4)

Using the reduction described in the proof of CNF-SAT ≤P 3SAT construct a formula φ′ in 3-cnf such that
φ is satisfiable if and only if φ′ is satisfiable.

Solution:
The formula φ′ is

(x1 ∨ x2 ∨ z) ∧ (z ∨ x3 ∨ x4) ∧ (x1 ∨ x4 ∨ x1)

where z is a new (fresh) variable.

Exercise 5 (compulsory)
Consider the following formula φ in 3-cnf.

(x ∨ x ∨ y) ∧ (x ∨ y ∨ y) ∧ (x ∨ y ∨ y)

Using the reduction described in the proof of 3SAT ≤P VERTEX-COVER construct an undirected graph
G and a number k such that G has k-vertex cover if and only if φ is satisfiable. List at least one k-vertex
cover of the graph and find a corresponding satisfying truth assignment of the formula φ.

Solution:
Let k be twice the number of clauses plus the number of variables, so k = 8 in our case. The graph G

3

COMPUTABILITY AND COMPLEXITY TUTORIAL 13

looks as follows:

ONMLHIJKGFED@ABCx ONMLHIJKx ONMLHIJKGFED@ABCy ONMLHIJKy

ONMLHIJKGFED@ABCx

������������������
ONMLHIJKx

++++++++++++++++++

ONMLHIJKGFED@ABCx ONMLHIJKGFED@ABCy ONMLHIJKx

QQ ONMLHIJKGFED@ABCy

GGGGGGGGGGGGGGGGGGGGGGGGGGGGGG

ONMLHIJKGFED@ABCy

99999999

�������� ONMLHIJKy

���������������������������

99999999

�������� ONMLHIJKGFED@ABCy

99999999

��������

The nodes marked by the double circle form an 8-vertex cover (note that there are more 8-vertex covers).
The corresponding satisfying assignment is x 7→ 1, y 7→ 1.

Exercise 6 (optional)
Consider the language SUBSET-SUM. In its variant discussed in the book, we are given a multiset S of
numbers (that means that some of the numbers in S can repeat several times) and we try to select some of
the numbers from S that add up to a given number t. We know that this problem is NP-complete. Show
that a slight variant of SUBSET-SUM where S is given as a set of numbers (which means that numbers
cannot repeat) is also NP-complete.

4

