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3.  Lisp and Scheme  

We use the programming language Scheme in this material. Therefore it is natural to start with a 
brief discussion of the family of languages, to which Scheme belongs. This is the Lisp family of 
languages.  

3.1.  Lisp 
Lecture 2 - slide 2 

Lisp was invented by John McCarthy in the late fifties. In these days the dominating use of 
computers was for numeric purposes. One of the purposes of Lisp was to support symbolic 
computation. 

As an example of symbolic computation, let us mention the calculation of differentiated 
mathematical functions. The symbolic derivation of the function f(x) = x * x  is the function g(x) = 2 
* x. The numeric derivation of f will never deliver the function g on source form. The best we can 
hope for is some sort of numeric approximation to g, which can be applied to numbers. 

It is worth noticing that transformation and compilation of programs also can be considered as 
symbolic computations. In fact it turns out, that the computer is better suited to do symbolic 
computations than numeric computations, because the former always can be done exactly, whereas 
the latter often are inexact. 

Today, many Lisp languages are not in use any more. Lisp 1.5 and Interlisp are two of these. 'Lisp' 
is today used as a family name of all 'Lisp languages', which includes such languages and Emacs 
Lisp, Common Lisp, and Scheme. 

 Lisp is the next oldest programming language - only Fortran is older.  
 

In the past, thousands of programming languages have been invented and tried out. Naturally, many 
of these are not in active use any more. It is interesting to notice that both Lisp and Fortran are still 
in widespread use for many different purposes. 

Below we will summarize the main characteristics of Lisp. 

 • Lisp characteristics: 
• Invented for symbolic computations 
• Superficially inspired by mathematical function theory 
• Is syntactically and uniformly based on parenthesized prefix notation 

• Parsing a Lisp program is trivial 
• Programming goes hand in hand with language development 
• It is easy to access and manipulate programs from programs 

• Calls for tool making in Lisp 

 



 10

One of the most remarkable facts of Lisp is that the primary data structure in the language - lists - is 
used for the representation of programs. This is the reason why we use all these parentheses in a 
Lisp program! Originally, this characteristic program representation was only thought as an 
intermediate representation, not to be used by the human programmer. It turned out, eventually, that 
the representation had some very useful properties. Therefore the following 'equation' is an 
important characteristic of all Lisp languages.  

 Program = Data = Lists 
 

 

  

3.2.  Scheme 
Lecture 2 - slide 3 

Scheme is a programming language in the Lisp family. Scheme is formally defined in the Scheme 
report [Abelson98], which is revised from time to time. Currently, the fifth revision is the most 
current one. This explains the abbreviation R5RS, which goes something like 'The fifth Revised 
Report on the Algorithmic Language Scheme'.  

 Scheme is a small, yet powerful language in the Lisp family  
 

   

 • Scheme characteristics: 
• Supports functional programming - but not on an exclusive basis 
• Functions are first class data objects 
• Uses static binding of free names in procedures and functions 
• Types are checked and handled at run time - no static type checking 
• Parameters are evaluated before being passed - no lazyness 

 

Many people encounter Lisp programming in Emacs Lisp [fsf02] , [fsf02a], because of the need of 
customizing Emacs in non-trivial ways. Emacs Lisp is an old and primitive dialect of Lisp. Hard 
core Lisp programmers are also likely to meet Common Lisp, which is much bigger than Scheme. 
The statement below compares very briefly Common Lisp and Emacs Lisp with Scheme.  

 

 Scheme  is an attractive alternative to Common Lisp (a big monster) and Emacs Lisp 
(the rather primitive extension language of the Emacs text editor).  
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 Exercise 2.1. Getting started with Scheme and LAML 

The purpose of this exercises is learn the most important practical details of using a Scheme 
system on Unix. In case you insist to use Windows we will assume that you install the necessary 
software in your spare time. There is no time available to do that during the course exercises. 
Further details on installation of Scheme and LAML on Windows.  

You will have to choose between DrScheme and MzScheme. 

DrScheme  is a user friendly environment for creating and running Scheme programs, with lots of 
menus and lots of help. However, it is somewhat awkward to use DrScheme with LAML. Only 
use DrScheme in this course if you cannot use Emacs, or if you are afraid of textually, command 
based tools. Follow this link for further details. 

MzScheme  is the underlying engine of DrScheme. MzScheme is a simple read-eval-print loop, 
which let you enter an expression, evaluate and print the result. MzScheme is not very good for 
debugging and error tracing. MzScheme works well together with Emacs, and there is a nice 
connection between MzScheme and LAML. MzScheme used with Emacs is preferred on this 
course. Please go through the following steps:  

1. Insert the following line in your .emacs file in your home dir, and then restart Emacs:  

  (load "/pack/laml/emacs-support/dot-emacs-contribution.el") 

2. Have a session with a naked Scheme system by issuing the following command in Emacs: 
M-x run-scheme-interactively  

o Define a couple of simple functions ( odd and even, for instance) and call them.  
o Split the window in two parts with C-x 2 and make a buffer in the topmost one 

named sources.scm ( C-x b ). Bring the Scheme interpreter started above into the 
lower part of the window. The buffer with the Scheme process is called 
*inferior-lisp*. Put the sources.scm buffer in Scheme mode ( M-x scheme-
mode ). Define the functions odd and even in the buffer and use the Scheme menu 
(or the keyboard shortcuts) to define them in the running Scheme process.  

3. Have a similar session with a Scheme+LAML system by issuing the following command 
in Emacs: M-x run-laml-interactively (You may have to confirm that a previously 
started Scheme process is allowed to be killed).  

o All you did in item 2 can also be done here.  
o Evaluate a simple HTML expression, such as  

      (html (head (title "A title")) (body (p "A body"))) 

o Use the function xml-render to make a textual rendering of the HTML 
expression.  

o Make a deliberate grammatical error in the LAML expression and find out what 
happens.  

4. Make a file 'try.laml'.  
o Control that Emacs brings the buffer in Laml mode. Issue a M-x laml-mode 
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explicitly, if necessary.  
o Use the menu 'Laml > Insert LAML template' to insert an XHTML template.  
o Fill in some details in the head and body.  
o Process the file via the LAML menu in Emacs: Process asynchronously. The file 

try.html will be defined.  
o Play with simple changes to the HTML expression, and re-process. You can just 

hit C-o on the keyboard for processing.  
o You can get good inspiration from the tutorial Getting started with LAML at this 

point.  

 
  

3.3.  References 
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2002.  
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4.  Expressions and values 

The notion of expression is of central importance in the functional programming paradigm. In some 
sense, expressions is the only computational building block of the functional programming 
paradigm. As a contrast, the imperative paradigm makes use of both commands and expressions. In 
the imperative paradigm commands are executed with the purpose of modifying the state of the 
program, as it is being executed. Expressions are executed - or evaluated - with the purpose of 
producing a value. Values of expressions can be used as parts of surrounding expressions, in an 
evaluation process. Ultimately, the value of an expression is presented to the person who runs a 
functional program. The value serves as the 'result' of the computation. 

  

4.1.  Expressions, values, and types 
Lecture 2 - slide 5 

We will now describe and characterize the important concepts of expressions, values and types.  

The relationship between the three key concepts is as stated below. 

 Evaluation of an expression yields a value which belongs to a type  
 

In the itemized list below we will describe the most important properties of expressions, values, and 
types. The coverage given here is only a brief appetizer. We have much more to say about all three 
of them later in the material. 

 • Expressions 
• Written by the programmer 
• Will typically involve one or more function calls 
• A Function - as written by the programmer - is itself an expression 

• Values 
• Primitive as well as composite 
• A function expression is evaluated to a function object 

• Types 
• A set of values with common properties 
• Type checking can be used to validate a program for certain errors before it is 

executed 

 

Expressions are part of the source program, as written by the programmer. 

A function expression is called a lambda expression. We will encounter these important expressions 
later in this material. 
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The primitive values are those which cannot be decomposed into more primitive parts. Some of the 
important primitive values are numbers, the two boolean values (true and false), and the characters 
of some character set. Primitive values stand as a contrast to composite values, such as lists and 
arrays, which are aggregations of parts, each of which are compositive or primitive values 
themselves. 

  

4.2.  Examples of expressions and their values 
Lecture 2 - slide 6 

Before we go into additional details, we will give examples of important kinds of expressions. This 
includes simple expressions, such as the well-known arithmetic expressions. Next we give an 
example of a conditional expression, which somehow corresponds to selective control structures in 
the imperative paradigm. Lambda expressions generate functions, and as such they are of primary 
importance for the functional programming paradigm. Finally, HTML expressions are of interest to 
the approach taken in the running example used in this material - an example from the domain of 
web program development. Wherever possible we wish to illustrate the use of functional 
programming in the web domain. In this domain, expressions that involve mirrors of HTML and 
XML elements are the key constituents.  

 • Let us assume that x has the value 3 
• Simple expressions  

• 7    has the value 7 
• (+ x 5)    has the value 8 

• Conditional expressions  
• (if (even? x) 7 (+ x 5))    has the value 8 

• Lambda expressions  
• (lambda (x) (+ x 1))    has the value 'the function that adds one to its 

parameter' 
• HTML mirror expressions  

(html 
 (head  
  (title "PP")) 
 (body  
  (p "A body paragraph")) 
) 

• The value of this expression can be rendered as a string in HTML which can be 
presented in an Internet browser. 

 

The conditional expression is evaluated in two steps. First the boolean expression (even? x) is 
evaluated. If x is even, the boolean expression (even? x) evaluates to true and the trivial 
expression 7 is evaluated. Because x is 3 and therefore odd, the other expression (+ x 5) is 
evaluated, giving us the final value 8. It is important to realize that an if form does not evaluate all 
three constituent expressions at the outset. It first evaluates the boolean expression, and based on 



 15

the outcome, it either evaluates the 'then part' or the 'else part'. Not both! We have much more to say 
about the order of evaluation of an if form in a later part of this material 

Regarding the lambda expression, the x in parentheses after lambda is the formal parameter of the 
function. the expression (+ x 1) is the body. In functions, the body is an expression - not a 
command. 

The HTML mirror expressions stem from the LAML libraries. 

The functions html, body, title, head, and p correspond to the HTML elements of the same 
names. In the LAML software, the HTML elements are mirrored as functions in Scheme. 

The evaluation order of the constituents in a conditional expression is discussed in details in Section 
20.10. Conditional expression is a theme we will study in much more detail in Chapter 10. HTML 
mirror expressions are discussed in additional details in Chapter 26. 

  

4.3.  Evaluation of parenthesized expressions 
Lecture 2 - slide 7 

Parentheses in Scheme are used to denote lists. Program pieces - expressions - are represented as 
lists. Evaluation of parenthesized expressions in Scheme follows some simple rules, which we 
discuss below. 

 How is the form (a b c d e) evaluated in Scheme? 
 

 

The form (a b c d e) appears as a pair of parentheses with a number of entities inside. The 
question is how the parenthesized expression is evaluated, and which constraints apply to the 
evaluation. 

 • Evaluation rules 
• The evaluation of the empty pair of parentheses ( ) is in principle an error 
• If a is the name of a special form, such as lambda, if, cond, or define special 

rules apply 
• In all other cases: 

• Evaluate all subforms uniformly and recursively. 
• The value of the first constituent a must be a function object. The function 

object is called with the values of b, c, d, and e as actual parameters. 

 

The evaluation of the empty pair of parentheses ( ) is often - in concrete Scheme systems - 
considered as the same as '( ), which returns the empty list. However, you should always quote 
the empty pair of parentheses to denote the empty list. 
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Having reached the case where a function is called on some given data, which are passed as 
parameters, like in the call (a b c d), the next natural question is how to call a function. We will 
explore this in detail in Chapter 20, more specifically, Section 20.3where we see that the call should 
be replaced by the body of the called function, in which the formal parameters should be replaced 
by the actual parameters.  

  

4.4.  Arithmetic expressions 
Lecture 2 - slide 8 

It is natural to start our more detailed study of expressions by reviewing the well-known arithmetic 
expressions. The important thing to notice is the use of fully parenthesized prefix notation.  

 Scheme uses fully parenthesized arithmetic expressions with prefix notation 
 

 

Prefix notation is defined in the following way: 

 Using prefix notation the operator is given before the operands  
 

Prefix notation stands as a contrast to infix and postfix notation. Infix notation is 'standard notation' 
in which the operand is found in between the operands. 

Below we give examples of evaluation of a number of different arithmetic expressions. Notice in 
particular the support of rational numbers in Scheme, and the possibility to use arbitrarily large 
numbers. 

Expression Value  
(+ 4 (* 5 6)) 34 
(define x 6) 
(+ (* 5 x x) (* 4 x) 3) 207 

(/ 21 5) 21/5 
(/ 21.0 5) 4.2 
(define (fak n) 
  (if (= n 0) 1 (* n (fak (- n 
1))))) 
 
(fak 50) 

30414093201713378043612608166064768 
844377641568960512000000000000 

Table 4.1    Examples of arithmetic expressions. The prefix notation can 
be seen to the left, and the values of the expressions appear to the right. 
 

 There is no need for priorities - operator precedence rules - of operators in fully 
parenthesized expressions  
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The observation about priorities of operators stands as a contrast to most other languages. In Lisp 
and Scheme, the use of parentheses makes the programmer's structural intentions explicit. There is 
no need for special rules for solving the parsing problem of arithmetic expressions. Thus, 1+2*3 is 
written (+ 1 (* 2 3)), and it is therefore clear that we want to multiply before the addition is carried 
out. 

  

4.5.  Equality in Scheme 
Lecture 2 - slide 9 

Equality is relevant and important in most programming paradigms and in most programming 
languages. Interestingly, equality distinctions are not that central in the functional programming 
paradigm. Two objects o1 and o2 which are equal in a weak sense (structurally equal) cannot really 
be distinguished in the functional paradigm. One of them can be substituted by the other without 
causing any difference or harm.  

When we encounter imperative aspects of the Scheme language, the different notions of equality 
becomes more important. In the imperative programming paradigm we may mutate existing objects. 
By changing one of the two structurally equal objects, o1 and o2, it is revealed if o1 and o2 are also 
equal in a stronger sense. If the mutation of o1 also affects o2 we can conclude that o1 and o2 are 
identical (eq? o1 o2). If a mutation of o1 does not affect o2, then (not (eq? o1 o2)).  

 As most other programming languages, Scheme supports a number of different 
equivalence predicates 

 

 

In Scheme we have the following important equivalence predicates: 

 • The most discriminating 
• eq? 

• The least discriminating - structural equivalence 
• equal? 

• Exact numerical equality 
• = 

• Others 
• eqv? is close to eq? 
• string=? is structural equivalence on strings 

 

An equivalence predicate divides a number of objects into equivalence classes (disjoint subsets). 
The objects in a certain class are all equal. The most discriminating equivalence predicate is the one 
forming most equivalence classes. 

To stay concrete, we show a number some examples of equality expressions in a dialogue with a 
Scheme system. You should consider to try out other examples yourself. 



 18

1> (eq? (list 'a 'b) (list 'a 'b)) 
#f 
 
2> (eqv? (list 'a 'b) (list 'a 'b)) 
#f 
 
3> (equal? (list 'a 'b) (list 'a 'b)) 
#t 
 
4> (= (list 'a 'b) (list 'a 'b)) 
=: expects type <number> as 2nd argument, given: (a b); other arguments were: (a 
b) 
 
5> (string=? "abe" "abe") 
#t 
 
6> (equal? "abe" "abe") 
#t 
 
7> (eq? "abe" "abe") 
#f 
 
8> (eqv? "abe" "abe") 
#f 

 Program 4.1    A sample interaction using and demonstrating the equivalence functions in Scheme.    

  

4.6.  The read-eval-print loop 
Lecture 2 - slide 10 

It is possible to interact directly with the Scheme interpreter. At a fine grained level, expressions are 
read and evaluated, and the resulting value is printed. This is a contrast to many other language 
processors, which require much more composite and coarse grained fragments for processing 
purposes.  

The tool which let us interact with the Scheme interpreter is called a 'read-eval-print loop', 
sometimes referred to via the abbreviation 'REPL'. 

 The 'read-eval-print loop' allows you to interact with a Scheme system in terms of 
evaluation of individual expressions  

 

We show the interaction with a Scheme REPL below. The interaction is quite similar to the 
exposition in Table 4.1. In this as well as in future presentations of REPL interaction, we often put a 
number in front of the prompt. This simple convenience to allow us to refer to a single interaction in 
our discussions. 
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1> (+ 4 (* 5 6)) 
34 
 
2> (define x 6) 
 
3> (+ (* 5 x x) (* 4 x) 3) 
207 
 
4> (/ 21 5) 
21/5 
 
5> (/ 21.0 5) 
4.2 
 
6> (define (fak n) (if (= n 0) 1 (* n (fak (- n 1))))) 
 
7> (fak 50) 
30414093201713378043612608166064768844377641568960512000000000000 

 Program 4.2    A sample session with Scheme using a read eval print loop.    

  

4.7.  References 
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5.  Types 

It is hard to justify a text about functional programming without a fair treatment of types. In this 
chapter we will go over the most important concepts of types, as relevant in the functional 
programming paradigm. 

  

5.1.  Types 
Lecture 2 - slide 12 

Types plays an essential role in any programming language and any programming paradigm. In 
many languages types are used in the program text as constraints on variables and parameters. C, 
Pascal, and Java are such languages. In others, the types are inferred (somehow extracted from use 
of variables, parameters etc. relative to the ways the variables and parameters are used in operators 
and functions). ML is such a language. Yet in other languages, types are solely used to classify the 
values (data objects) at run time. Scheme is such a language. Thus, in Scheme we do not encounter 
types in the source program, but only at run time.  

In general, we see three advantages of dealing with types: 

 The notion of type is used to make programs more readable, make them run more 
efficient, and to detect certain errors before they cause errors in the calculation. 

 

 

Let us now make a more detailed characteristics of these advantages in the following itemized list. 

 • Readability 
• Explicitly typed variables, parameters and function serve as important 

documentation, which enhances the program understanding. 
• Efficiency 

• Knowledge of the properties of data makes it possible to generate more efficient 
code 

• Correctness 
• Explicit information about types in a program is a kind of redundancy against 

which it is possible to check expressions and values 
• Programmers usually wish to identify type errors as early as possible in the 

development process 

 

The correctness quality is often brought into focus. In the next few sections we will therefore 
discuss type checking issues. 
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5.2.  Type checking 
Lecture 2 - slide 13 

As already mentioned the use of types in source programs makes it possible to deal with program 
correctness - at least in some simple sense. In this context, correctness is not relative to the overall 
intention or specification of the program. Rather, it is in relation to the legal use of values as input 
to operators and functions. 

 Type checking is the processes of identifying errors in a program based on explicitly or 
implicitly stated type information  

 

Below we will identify three kinds of 'typing', which are related to three different approaches to 
type checking. 

 • Weak typing 
• Type errors can lead to erroneous calculations 

• Strong typing 
• Type errors cannot cause erroneous calculations 
• The type check is done at compile time or run time 

• Static typing 
• The types of all expressions are determined before the program is executed 
• The type check is typically carried out in an early phase of the compilation 
• Comes in two flavors: explicit type decoration and implicit type inference 
• Static typing implies strong typing 

 

According to section 1.1 the Scheme Report (R5RS) 'Scheme has latent as opposed to manifest 
types. Types are associated with values (also called objects) rather than with variables.' In our 
categorization, Scheme is strongly typed and types are dealt with at run time (on values) as a 
contrast to compile time (on variables). 

It is worth noticing that we classify Scheme as supporting strong typing. Many programmers will 
probably be surprised by this categorization, because the 'typing' in Scheme is experienced to be 
relatively 'weak' and 'dynamic'. However, type errors in Scheme do not cause erroneous 
calculations. Type errors are discovered at a low and basic level. As such we find it justifiable to 
classify the typing in Scheme as being strong. Notice however, that there is no trace of static type 
checking in Scheme. Static type checking is the rule in most modern programming languages today, 
and static type checking is also an absolutely key aspect in functional programming languages such 
as ML [Harper88] and Haskell [Hudak92].  
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5.3.  Static type checking 
Lecture 2 - slide 14 

We here make the distinction between explicit type decoration and implicit type inference, and 
explain the principled difference. 

 There are two main kinds of static type checking: explicit type decoration and implicit 
type inference  

 

For the sake of the discussion we will involve the following example: 

 Let us study the expression (+ x (string-length y)) 

  

 • Explicit type decoration 
• Variables, parameters, and others are explicitly declared of a given type in the 

source program 
• It is checked that y is a string and that x is a number 

• Implicit type inference 
• Variables and parameters are not decorated with type information 
• By studying the body of string-length it is concluded that y must be a string 

and that the type of (string-length y) has to be an integer 
• Because + adds numbers, it is concluded that x must be a number 

 

Explicit type decoration is well-known to most computer science students. 

If you want to study additional details about implicit type inference you should consult a textbook 
of ML or Haskell programming.  

  

5.4.  An example of type checking 
Lecture 2 - slide 15 

We will now discuss type checking relative to the three kinds of 'typing', which we identified in 
Section 5.2. 

 Is the expression   (+ 1 (if (even? x) 5 "five"))   correct with respect to types? 
 

 

The example shows an arithmetic expression that will cause a type error with most type checkers. 
However, if x is even the sum can be evaluated to 6. If x is odd, we encounter a type error because 
we cannot add the integer 1 to the string "five". 
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 • Weak typing 
• It is not realized that the expression (+ 1 "five") is illegal. 
• We can imagine that it returns the erroneous value 47 

• Strong typing 
• If, for instance, x is 2, the expression (+ 1 (if (even? x) 5 "five")) is OK, 

and has the value 6 
• If x is odd, it is necessary to identify this as a problem which must be reported 

before an evaluation of the expression is attempted 
• Static typing 

• (+ 1 (if (even x) 5 "five"))   fails to pass the type check, because the type 
of the expression cannot be statically determined 

• Static type checking is rather conservative 

 

When we use the word conservative for static type checking, we refer to the caution of the type 
checker. Independent of branching, and in 'worst cases scenarios', the type constraints should be 
guaranteed to hold. 

  

5.5.  Types in functional programming languages 
Lecture 2 - slide 16 

Before we proceed we will compare the handling of types in Scheme with the handling of types in 
other functional programming languages. Specifically, we compare with Haskell and ML. 

 Scheme is not representative for the handling of types in most contemporary functional 
programming languages 

 

 

   

 • ML and Haskell 
• Uses static typing ala implicit type inference 
• Some meaningful programs cannot make their way through the type checker 
• There will be no type related surprises at run time 

• Scheme 
• Is strongly typed with late reporting of errors 
• Type errors in branches of the program, which are never executed, do not prevent 

program execution 
• There may be corners of the program which eventually causes type problems 

 
  

 Due to the handling of types, Scheme and Lisp are elastic and flexible compared with 
ML, Haskell, and other similar language which are quite stiff and rigid.  
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6.  Lists 

The list data type is the characteristic composite data type in all Lisp languages, and as such also in 
Scheme. Interesting enough, the surface form of a Lisp program is a list itself. This is an important 
practical observation. Below, we will study the list data type of Lisp and Scheme.  

  

6.1.  Proper lists 
Lecture 2 - slide 18 

Lists are recursively composed. We start with the main points regarding the recursive construction 
of lists. 

 A list is recursively composed of a head and a tail, which is a (possibly empty) list itself 

The building blocks of lists are the cons cells 

Every such cell is allocated by an activation of the cons function 
 

 

Below we illustrate how the list (d c b a) is built. The web version of the material gives the best 
impression of the construction process, via animation (refresh the web presentation to restart the 
animation). The paper version of the material only shows the end result of the construction. 

 
Figure 6.1    A list (d c b a) constructed by evaluating the expression 
(cons 'd (cons 'c (cons 'b (cons 'a '())))). 

In the items below we emphasize the decomposition of the cons cell made by (cons e f), where e 
is an arbitrary expression and f is a list. Notice that we assume that the variable x is bound to (cons 
e f). 

 • Construction of the list structure which we here call x 
• (cons e f) 

• Selection: 
• (car x) => e 
• (cdr x) => f 

 

The constructor function cons takes an element e and a list f and constructs a new list. As illustrated 
above cons makes exactly one new cons cell, and no kind of list copying is involved at all. 
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The selector car returns the first element of the list. A better name of car would be head . 

The selector cdr returns the list consisting of all but the first element in the list. A better name of 
cdr would be tail . 

 A proper list is always terminated by the empty list  
 

In Scheme the empty list is denoted '(). When we in this context talk about the termination of the 
list we mean the value we get by following the cdr references to the end of the list structure. 

  

6.2.  Symbolic expressions and improper lists 
Lecture 2 - slide 19 

As illustrated above, the cons function can be used to construct linear linked lists. It should not 
come as a surprise, however, that cons can be used to make binary tree structures as well. The 
reason is that each cons cell can refer to two other cons cells. 

 The cons function is suitable for definition of binary trees with 'data' in the leaves 
 

 

In Figure 6.2 we show a binary tree structure made by use of the the cons function. The light blue 
box labeled Sexpr is a variable, the value of which is the binary tree structure. In Exercise 2.2 you 
are encouraged to construct the tree. 

 
Figure 6.2    A symbolic expression which illustrates the most general 
form it can take - a binary tree  

In Figure 6.3 we show the exact same structure in a slightly different layout, and with another 
coloring. This layout emphasizes the understanding of the structure as an improper list. The first 
element is the green tree, the second is the brown tree, the third is the symbol g, and the improper 
list element is the symbol h. 
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Figure 6.3    The same symbolic expression laid out as a list. The 
expressions is a proper list if and only if h is the empty list. If h is not the 
empty list, the symbolic expression is an improper list. 

As a matter of terminology, we use the name symbolic expressions, or S-expressions, for the 
structures we have shown above. 

 
 Exercise 2.2. Construction of symbolic expressions 

Construct the symbolic expressions illustrated on this page via the cons primitive in Scheme. The 
entities named a through h should be symbols. As a help, the rightmost part of the structure is 
made by (cons 'g 'h). 'g is equivalent to (quote g), meaning that g is not evaluated, but 
taken for face value. 

Experiment with h being the empty list. Try to use a proper list function, such as length, on your 
structures. 

 

  

6.3.  Practical list construction 
Lecture 2 - slide 20 

On this page we address topics related to 'practical list construction'. Often, cons is too low level for 
construction of lists. Instead we use the list function or quoted expressions. A quoted expression 
is taken for face value; The quote form ´(e) prevents evaluation. The quasiquote form `(e) is a 
variant of quote, which allows non constant constituents in a quote form. Please notice the use of 
'normal quote' and 'back quote' before the parentheses. For details of the quasiquote special form 
you should consult section 4.2.6 in the Scheme report [Abelson98] . 

 cons is the basic list constructor function - but it can be applied through a number of 
other means as well 
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 • List and S-expression cons truction: 
• Deep cons expressions 
• Using the list function 
• Using quote or quasiquote also known as backquote 

 
  

Expression Value  
(cons 1 (cons 2 (cons (+ 1 2) '()))) (1 2 3) 
(list 1 2 (+ 1 2)) (1 2 3) 
(quote (1 2 (+ 1 2))) (1 2 (+ 1 2)) 
'(1 2 (+ 1 2)) (1 2 (+ 1 2)) 

(quasiquote (1 2 (unquote (+ 1 2)))) (1 2 3) 
`(1 2 ,(+ 1 2)) (1 2 3) 

Table 6.1    Examples of list construction by use of cons , list and 
quoted list expressions. 
 

 
 Exercise 2.3. Every second element of a list 

Write a function, every-second-element, that returns every second element of a list. As 
examples 

  (every-second-element '(a b c)) => (a c) 
  (every-second-element '(a b c d)) => (a c) 

It is recommended that you formulate a recursive solution. Be sure to consider the basis case(s) 
carefully. 

It is often worthwhile to go for a more general solution than actually needed. Sometimes, in fact, 
the general solution is simpler than one of the more specialized solutions. Discuss possible 
generalizations of every-second-element, and implement the one you find most appropriate. 

 

  

6.4.  List functions 
Lecture 2 - slide 21 

On this page we will review a number of important list functions, which are part of Scheme and 
described in section 6.3.2 of the Scheme report [Abelson98] . 

 There exists a number of important List functions in Scheme, and we often write other 
such functions ourselves 
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 • (null? lst)     A predicate that returns whether lst is empty 
• (list? lst)     A predicate that returns whether lst is a proper list 
• (length lst)     Returns the number of elements in the proper list lst 
• (append lst1 lst2)     Concatenates the elements of two or more lists 
• (reverse lst)     Returns the elements in lst in reverse order 
• (list-ref lst k)     Accesses element number k of the list lst 
• (list-tail lst k)     Returns the k'th tail of the list lst 

 

It should be noticed that the first element is designated as element number 0. Thus (list-ref '(a 
b c) 1) returns b 

6.5.  Association lists 
Lecture 2 - slide 22 

Association lists are often used to associate two pieces of data. Association lists in Lisp and Scheme 
correspond to a particular implementation of associative arrays, cf. [knoopnotes] 

 An association list is a list of cons pairs 

Association lists are used in the same way as associative arrays  

 

In the table below we shows simple examples and applications of association lists. Try them out 
yourself! 

Expression Value  
(define computer-prefs  
 '((peter . windows) (lars . mac) 
   (paw . linux) (kurt . unix))) 

 

(assq 'lars computer-prefs) (lars . mac) 
(assq 'kurt computer-prefs) (kurt . unix) 
(define computer-prefs-1 
 (cons (cons 'lene 'windows)  
  computer-prefs)) 

 

computer-prefs-1 

((lene . windows) 
 (peter . windows)  
 (lars . mac) 
 (paw . linux) 
 (kurt . unix)) 

Table 6.2    Examples of association lists. The function assq uses eq? to 
compare the first parameter with the first element - the key element - in 
the pairs. As an alternative, we could use the function assoc, which uses 
equal? for comparison. A better and more general solution would be to 
pass the comparison function as parameter. Notice in this context, that 
both assq and assoc are 'traditional Lisp functions' and part of 
Scheme, as defined in the language report. 
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 Exercise 2.4. Creation of association lists 

Program a function pair-up that constructs an association list from a list of keys and a list of 
values. As an example 

  (pair-up '(a b c) (list 1 2 3)) 

should return 

  ((a . 1) (b . 2) (c . 3)) 

Think of a reasonable solution in case the length of the key list is different from the length of the 
value list. 

 
 Exercise 2.5. Association list and property lists 

Association lists have been introduced at this page. An association list is a list of keyword-value 
pairs (a list of cons cells). 

Property lists are closely related to association lists. A property list is a 'flat list' of even length 
with alternating keys and values. 

The property list corresponding to the following association list 

  ((a . 1) (b . 2) (c . 3)) 

is 

  (a 1 b 2 c 3) 

Program a function that converts an association list to a property list. Next, program the function 
that converts a property list to an association list. 

 

  

6.6.  Property lists 
Lecture 2 - slide 23 

Property lists are closely related to association lists. On this page - in Table 6.3 - we compare the 
two kinds of lists with each other. In Program 6.1 we give examples of property lists from LAML, 
which uses property lists for attributes in HTML, XML, and CSS. 

 A property list is a flat, even length list of associations 

The HTML/XML/CSS attributes are represented as property lists in LAML documents  
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Association list Property list 
((peter . "windows") (lars . "mac") 
 (paw . "linux") (kurt . "unix")) 

(peter "windows" lars "mac" 
 paw "linux" kurt "unix") 

Table 6.3    A comparison between association lists and property lists. In 
this example we associate keys (represented as symbols) to string values. 
 

(load (string-append laml-dir "laml.scm")) 
(laml-style "simple-xhtml1.0-transitional-validating") 
 
 
(write-html 'raw 
 (html 'xmlns "http://www.w3.org/1999/xhtml" 
  (head  
   (meta 'http-equiv "Content-Type"  
         'content "text/html; charset=iso-8859-1")  
   (title "Attribute Demo")) 
  (body 'id "KN" 'class "generic" 
 
    (p "Here comes a camouflaged link:") 
 
    (p (a 'href "http://www.cs.auc.dk" 'css:text-decoration "none" 
          'target "main" "Link to the CS Department")) 
 
    (p "End of document.")))) 
 
 
(end-laml) 

 
Program 6.1    A simple LAML document with emphasis on the attributes, represented as property 
lists. There are four attribute lists (property lists, each with its own color). Notice the CSS attribute 
css:text-decoration, given inline in the document .  

 
 

 
 

 In the LAML general library there are functions ( alist-to-propertylist and 
propertylist-to-alist ) that convert between association lists and property lists 

 

 

You should consult Section 26.2 if you want to learn more about the handling of attributes in 
LAML. 

  

6.7.  Tables as lists of rows 
Lecture 2 - slide 24 

In this material we are especially interested in studying examples from the web domain. In HTML, 
tables are represented as collections of rows. It is therefore obvious to use lists of lists as a concrete 
Lisp representation of tables. In Table 6.4 we show such a table, tab1, its rendering, and a number 
of manipulations of the table (transpositions, row eliminations, and column eliminations). The table 
operations will be studied in further details in Exercise 4.4 . 
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 It is natural to represent tables as lists of rows, and to represent a row as a list 

Tables play an important roles in many web documents 

LAML has a strong support of tables  

 

   

Expression Value  

tab1 

(("This" "is" "first" "row") 
 ("This" "is" "second" "row") 
 ("This" "is" "third" "row") 
 ("This" "is" "fourth" "row") 
) 

(show-table tab1) 

This is first row 

This is second row 
This is third row 
This is fourth row  

(show-table (transpose-1 tab1)) 

This This This This 
is is is is 

first second third fourth 
row row row row  

(show-table (eliminate-row 2 tab1)) 

This is first row 

This is third row 
This is fourth row  

(show-table (eliminate-column 4 tab1)) 

This is first 
This is second 
This is third 

This is fourth  
Table 6.4    Examples of table transposing, row elimination, and column 
elimination. We will program and illustrate these functions in a later 
exercise of this material. The function show-table is similar to 
table-0 from a LAML convenience library. Using higher-order 
functions it is rather easy to program the show-table function. We will 
come back to this later in these notes. 
 

In the program below we show a possible implementation of the show-table function, which we 
used in Table 6.4 The function table-1 is one of the LAML convenience functions, which we have 
used in the past. There are others and more interesting ways to deal with tables in LAML. You 
should consult Program 18.6 for details. 
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(define (show-table rows) 
 (let ((row-lgt (length (first rows)))) 
   (table-1 
      0  
      (make-list row-lgt 50)  
      (make-list row-lgt green1) 
      rows))) 

 
Program 6.2    The function show-table, implemented in terms of a LAML table function. There are 
several different ways to implement and deal with the table functions. In the chapter about higher-
order functions we describe another simple table function. 

 
 

  

6.8.  Programs represented as lists 
Lecture 2 - slide 25 

The purpose of this section is to remind you that Scheme programs are themselves list structures. At 
this point of the material, it should not be a big surprise to the readers. 

 It is a unique property of Lisp that programs are represented as data, using the main data 
structure of the language: the list 

 

 

   

 A sample Scheme program from the LAML library: 

  
(define (as-number x) 
  (cond ((string? x) (string->number x)) 
        ((number? x) x) 
        ((char? x) (char->integer x)) 
        ((boolean? x) (if x 1 0))  ; false -> 0, true -> 1 
        (else 
         (error 
          (string-append "Cannot convert to number " (as-string x)))) 

 Program 6.3    The function from the general library that converts different kinds of data to a 
number.   

 

Is it possible to access the list source program of a Scheme definition? In other words, is it possible 
to introspect and reflect about a Scheme program from another Scheme program. Or even more 
interesting perhaps, is it possible for a function to introspect and affect its own source code? Using 
the standard Scheme functions the answers are 'no'. However, some Scheme systems allow it 
nevertheless, through use of non-standard functions. Using more traditional Lisp languages, the 
answers are 'yes'. 

 In Scheme it is not intended that the program source should be introspected by the 
running program 

But in other Lisp systems there is easy access to self reflection  
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7.  Other Data Types 

There are other kinds of data than lists and numbers. In this chapter we will - relatively briefly - 
review booleans, characters, symbols, vectors, and strings in Scheme. 

  

7.1.  Other simple types 
Lecture 2 - slide 27 

As most other programming languages Scheme supports the simple types of booleans and 
characters. As a slightly more specialized type, Scheme also supports symbols.  

You can get the details of these data types by reading in the Scheme Report [Abelson98]. Section 
6.3.1 in the report covers the boolean type. Section 6.3.4 is about characters. Symbols are described 
in section 6.3.3. From the slide and the annotated slide view of this material, there are direct links to 
these sections of the Scheme Report. 

 Besides numbers, Scheme also supports booleans, characters, and symbols  
 

   

 • Booleans 
• True is denoted by #t and false by #f 
• Every non-false values count as true in if and cond 

• Characters 
• Characters are denoted as #\a, #\b, ... 
• Some characters have symbolic names, such as #\space, #\newline 

• Symbols 
• Symbols are denoted by quo ting their names: 'a , 'symbol , ... 
• Two symbols are identical in the sense of eqv? if and only if their names are 

spelled the same way 

 

The equivalence function eqv? is similar to eq?. See section 6.1 of [Abelson98] for details. 

  

7.2.  Vectors 
Lecture 2 - slide 28 

There are a number of superficial similarities between vectors and list, as supported by Scheme. 
However, at the conceptual level vectors are arrays, and lists are linearly linked structures. As such, 
they represent quite different structures. 
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The most basic and fundamental difference between lists and vectors is that lists can be changed 
and extended in a very flexible way (due to the use of dynamically allocated cons cells). A vector is 
of fixed and constant size once allocated. 

Vectors are treated in section 6.3.6 of [Abelson98]. 

 Vectors in Scheme are heterogeneous array- like data structures of a fixed size 
 

 

   

 • Vectors are denoted in a similar way as list 
• Example: #(0 a (1 2 3)) 
• Vectors must be quoted in the same way as list when their external 

representations are used directly 
• The function vector is similar to the function list 
• There are functions that convert a vector to a list and vice versa 

• vector->list 
• list->vector 

 
  

 The main difference between lists and vectors is the mode of access and the mode of 
construction  

 

There is direct access to the elements of a vector. List elements are accessed by traversing a cha in 
of references. This reflects the basic differences between arrays and linked lists. 

The mode of construction for list is recursive, using the cons function. Lists are created 
incrementally: New elements can be created when needed, and prepended to the list. Vectors are 
allocated in one chunck, and cannot be enlarged or decreased incrementally. 

  

7.3.  Strings 
Lecture 2 - slide 29 

There are no big surprises in the way Scheme handles and supports strings. Please see section 6.3.5 
of [Abelson98] for details. 

 

 String is an array- like data structure of fixed size with elements of type character. 
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 • The string and vector types have many similar functions 

• A number of functions allow lexicographic comparisons of strings: 
• string=?, string<?, string<=?, ... 
• There are case- independent, ci, versions of the comparison functions. 

• The substring function extracts a substring of a string 

 
  
  

 Like lists, strings are important for many practical purposes, and it is therefore important 
to familiarize yourself with the string functions in Scheme 
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8.  Functions 

We have now reached the most central concept in this material, namely functions. Functions play a 
key role in the functional programming paradigm. 

Before we look at the function concept as such, we will take a look at definitions. 

  

8.1.  Definitions 
Lecture 2 - slide 31 

A definition binds a value to a name. The name is often referred to as a variable. The value bound 
to a name may be a function value (function object/closure), but it may also be another kind of 
value, such as a number or a list. 

 A definition binds a name to a value  
 

Below we show the syntactic form of a definition in Scheme. 

 
(define name expression)  

 Syntax 8.1    A name is first introduced and the name is bound to the value of the expression    
 

 • About Scheme define forms 
• Appears normally at top level in a program 
• Creates a new location named name and binds the value of expression to that 

location 
• In case the location already exists we have redefinition,and the define form is 

equivalent to the assignment (set! name expr) 
• Does not allow for imperative programming, because define cannot appear in 

selections, iterations, etc. 
• Can also appear at certain positions in bodies, but only as syntactic sugar for local 

binding forms (letrec) 

 

In Section 8.12 we discuss definition of functions, and a particular variation of define which 
applies only for function definition. 

As it is stated in the first item, define forms appear normally, but not necessarily at top level of a 
Scheme program. By top level we mean 'at the outer level' of a program - not nested into other 
constructs.  
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It is, however, possible to have define forms at certain other locations in a Scheme program. The 
Scheme Report [Abelson98] explains this in section 5.2. Later in this material, in Section 28.3, 
where we discuss simulation of object-oriented concepts in Scheme, we will use nested define 
forms. 

  

8.2.  The function concept 
Lecture 2 - slide 33 

We start our coverage of functions with the observation that there is both a conceptual and a 
notational starting point.  

 The conceptual starting point is the well-known mathematical concept of functions 

The notational starting point is lambda calculus 
 

 

The conceptual starting point is well-known for most readers, due to the common knowledge of the 
mathematical meaning of functions. 

The notational starting point is probably not familiar to very many readers. It happens to be the case 
that the notational inspiration of lambda calculus is quite superficial, as applied in Scheme and Lisp. 

 • The mathematical function concept 
• A mapping from a domain to a range 
• A function transfers values from the domain to values in the range 

• A value in the domain has at most a single corresponding value in the 
range 

• Totally or partially defined functions 
• Extensionally or intensionally defined functions 

• Lambda calculus  
• A very terse notation of functions and function application  

 

An extensiona lly defined function is defined by a set of pairs, enumerating corresponding elements 
in the domain and range. Notice that this causes practical problems if there are many different 
values in the domain of the function. An intensionally defined function is based on an algorithm 
that describes how to bring a value from the domain to the similar value in the range. This is a much 
more effective technique to definition of most the functions, we program in the functional 
paradigm. 

Before we continue the conceptual and programming-related discussion of functions, we will in 
Section 8.3 take a closer look at the notational starting point. 
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8.3.  Lambda calculus 
Lecture 2 - slide 34 

We will here introduce the notation of the lambda calculus, mainly in order to understand the 
inspiration which led to the concept of lambda expressions in Lisp and Scheme. 

 Lambda calculus is a more dense notation than the similar Scheme notation  
 

   

 Lambda calculus  Scheme  

Abstraction ? v . E (lambda (v) E) 
Combination E1 E2 (E1 E2) 

Table 8.1    A comparison of the notations of abstraction and combination 
(application) in the lambda calculus and Lisp. In some variants of 
lambda calculus there are more parentheses than shown here: (? v . E). 
However, mathematicians tend to like ultra brief notation, and they often 
eliminate the parentheses. This stands as a contrast to Lisp and Scheme 
programmers. 

  

8.4.  Functions in Scheme 
Lecture 2 - slide 35 

On this page we introduce the crucial distinction between a lambda expression and a function 
object. Lambda expressions are part of a source program. Lambda expressions can be evaluated as 
all other Scheme expressions. The value of a lambda expression is a function object. 

 Functions are represented as lambda expressions in a source program 

At run time, functions are represented as first class function objects  

 

Below we show a sample dialogue with a Scheme system. In the dialogue we define functions, and 
we play with them in order to illustrate some of the basic properties of function in relation to 
function definition and application. Please play with these elements yourself! 

> (define x 6) 
 
> (lambda (x) (+ x 1)) 
#<procedure> 
 
> (define inc (lambda (x) (+ x 1))) 
 
> inc 
#<procedure:inc> 
 
> (if (even? x) inc fac) 
#<procedure:inc> 
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> ((if (even? x) inc fac) 5) 
6 

 

Program 8.1    A sample read-eval-print session with lambda expressions and function objects. In a 
context where we define x to the number 6 we first evaluate a lambda expression. Scheme 
acknowledges this by returning the function object, which prints like ' #<procedure> '. As a 
contrast to numbers, lists, and other simple values, there is no good surface representation of 
function values (function objects). Next we bind the name inc to the same function object. More 
about name binding in a later part of this material . The expression (if (even? x) inc fac) 
returns inc because the value of x is 6, and as such it is even. Therefore the value of ((if 
(even? x) inc fac) 5) is the same as the value of (inc 5), namely 6. 

 

 

  

8.5.  Function objects 
Lecture 2 - slide 36 

Let us now define the concepts of function objects and closures. 

 A function object represents a function at run time. A function object is created as the 
value of a lambda expression 

A function object is also known as a closure.  

 

A function object is a first class value at run time, in the same way as numbers, lists and other data 
are values. This is different from more traditional programming languages, where procedural and 
functional abstractions have another status than ordinary data. 

The name 'closure' is related to the interpretation of free names in the body expression of the 
function. Free names are used, but not defined in the body. In a function object (or closure) the free 
names are bound in the context of the lambda expression. This is a contrast to the case where the 
free names are bound in the context of the application of the function.  

 • Characteristics of function objects: 
• First class objects 
• Does not necessarily have a name 
• A function object can be bound to a name in a definition 
• Functions as closures: 

• Capturing of free names in the context of the lambda expression 
• Static binding of free names 
• A closure is represented as a pair of function syntax and values of free 

names 
• A function object can be applied on actual parameters, passed as a parameter to a 

function, returned as the result from another function, and organized as a 
constituent of a data structure 
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The first characteristics of functions, as mentioned in the itemized lists above, is 'the first class 
status'. We will consolidate our understanding of first class 'citizens' in Section 8.6 . 

  

8.6.  Functions as first class values 
Lecture 2 - slide 37 

As it is discussed in this section, first class entities in a language can be passed as parameters, 
returned as results, and organized in data structures. 

We are used to the first class status of numbers and lists. But with a background from imperative 
programming, we are not used to organize functions and procedures in data structures, and we are 
not used to the possibility of returning procedures and functions from other abstractions. 

Notice that objects, as known from the object-oriented paradigm, are of first class. 

Here is our definition of being 'of first class'. 

 A first class citizen is an entity which can be passed as parameter to functions, returned 
as a result from a function, and organized as parts of data structures  

 

   

 A function object is a first class citizen 
 

 

In Program 8.2 we show an interaction with a Scheme system, which illustrates that functions can 
be used as elements in data structures. 

1> (define toplevel-html-elements (list html frameset)) 
 
2> overall-html-elements 
(#<procedure> #<procedure>) 
 
3> ((cadr toplevel-html-elements) (frame 'src "sss")) 
(ast "frameset" ((ast "frame" () (src "sss") single)) () double) 
 
4> (xml-render ((cadr toplevel-html-elements) (frame 'src "sss"))) 
"<frameset><frame src = \"sss\"></frameset>" 
 

 

Program 8.2    A few interactions which illustrate the first class properties of function objects. We 
bind the variable toplevel-html-elements to the list of the two functions html and 
frameset. Both are HTML mirror functions defined in the LAML general library. We illustrate 
next that the value of the variable indeed is a list of two functions. Thus, we have seen that we can 
organized functions as elements in lists. The function cadr returns the second element of a list. It is 
equivalent to (compose car cdr), where compose is functional composition. In the third 
evaluation we apply the mirror function frameset on a single frame. The last interaction shows 
the HTML rendering of the this. xml-render is a function defined in the LAML general library.  

 

 



 46

 8.7.  Anonymous functions 
Lecture 2 - slide 38 

The reader may believe that a function name is a necessary constituent of a function. This 
understanding is not correct, however. We can chose to associate a name with a function by using 
an enclosing define form, as explained in Section 8.1. But the function itself is not named. 

 A function object does not have a name, and a function object is not necessarily bound 
to a name 

 

 

The interactions below illustrate the use of anonymous functions, i.e., functions without names. 

1> ((lambda(x) (+ x 1)) 3) 
4 
 
2> (define fu-lst (list (lambda (x) (+ x 1)) (lambda (x) (* x 5)))) 
 
3> fu-lst 
(#<procedure> #<procedure>) 
 
4> ((second fu-lst) 6) 
30 
 

 
Program 8.3    An illustration of anonymous functions. The function (lambda(x) (+ x 1)) is 
the function that adds one (to its parameter). It is organized in a list side by side with the function 
that multiplies by five. Notice in this context that none of these two functions are named. In the last 
interaction we apply the latter to the number 6.  

 

 

 8.8.  Lambda expressions in Scheme 
Lecture 2 - slide 39 

The syntax definitions in Syntax 8.2 and Syntax 8.3 below show the two possible forms of lambda 
expressions. 

Each of the formal parameters in a formal parameter list are binding name occurrences. It means 
that a formal parameter introduces a new name with a new role. The new name can be used and 
referred from other parts of the program. We can talk about the scope of the name as the area of the 
program in the which the binding is in effect. The scope of a formal parameter is - quite naturally - 
the body expression of the lambda form. 

In the first syntax definition, formal-parameter-list is a list of formal parameters. The formal 
parameter list may be improper, such as (a b . c). In this case all actual parameters after the 
second one is bound to c. 

 
(lambda (formal-parameter-list) expression)  

 Syntax 8.2       
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In the second case, the list of actual parameters is simply bound to the name formal-parameters-
name. 

Be sure to understand the correspondence between formal parameters (in the two forms) and the 
actual parameters. Use Exercise 2.6 to strengthen your understanding. 

 
(lambda formal-parameters-name expression)  

 Syntax 8.3       
 • Lambda expression characteristics in Scheme: 

• No type declaration of formal parameter names 
• Call by value parameters 

• In reality passing of references to lists and other structures 
• Positional and required parameters 

• (lambda (x y z) expr) accepts exactly three parameters 
• Required and rest parameters 

• (lambda (x y z . r) expr) accepts three or more parameters 
• Rest parameters only 

• (lambda r expr) accepts an arbitrary number of parameters 

 
  

 
 Exercise 2.6. Parameter passing in Scheme 

Familiarize yourself with the parameter passing rules of Scheme by trying out the following calls: 

  ((lambda (x y z) (list x y z)) 1 2 3) 
  ((lambda (x y z) (list x y z)) 1 2) 
  ((lambda (x y z) (list x y z)) 1 2 3 4) 
  ((lambda (x y z . r) (list x y z r)) 1 2 3) 
  ((lambda (x y z . r) (list x y z r)) 1 2) 
  ((lambda (x y z . r) (list x y z r)) 1 2 3 4) 
  ((lambda r r) 1 2 3) 
  ((lambda r r) 1 2) 
  ((lambda r r) 1 2 3 4) 

Be sure that you can explain all the results 

 

  



 48

8.9.  Optional parameters of Scheme functions (1) 
Lecture 2 - slide 40 

In LAML software we use a particular pattern to deal with optional parameters. This pattern is built 
on top of the rest parameter mechanism discussed in Section 8.8. The pattern also involves a 
function optional-parameter, defined in the LAML general library, as an important brick. 

When we use optional parameters of a function, the caller may chose not to pass a value. In that 
case, the parameter is bound to a default value, which is defined as part of the function. 

 It is often useful to pass one or more optional parameters to a function 

In case an optional parameter is not passed explicitly, a default value should apply  

 

The example in Program 8.4 illustrates how to define a function which requires one parameter rp, 
and up to three optional parameters op1, op2, and op3. 

(define (f rp . optional-parameter-list) 
 (let ((op1 (optional-parameter 1 optional-parameter-list 1)) 
       (op2 (optional-parameter 2 optional-parameter-list "a")) 
       (op3 (optional-parameter 3 optional-parameter-list #f))) 
  (list rp op1 op2 op3))) 

 

Program 8.4    A example of a function f that accepts optional-parameters. Besides the required 
parameter rp, the function accepts an arbitrary number of additional parameters, the list of which 
are bound to the formal parameter optional-parameter-list. The function optional-parameter from 
the LAML general library accesses information from optional-parameter-list. In case an optional 
parameter is not passed, the default value (the last parameter of optional-parameter) applies.  

 

 

The following dialogue with a Scheme system shows optional parameters in play. 

0> 
(define (f rp . optional-parameter-list) 
  (let ((op1 (optional-parameter 1 optional-parameter-list 1)) 
 (op2 (optional-parameter 2 optional-parameter-list "a")) 
 (op3 (optional-parameter 3 optional-parameter-list #f))) 
    (list rp op1 op2 op3))) 
 
1> (f 7) 
(7 1 "a" #f) 
 
2> (f 7 "c") 
(7 "c" "a" #f) 
 
3> (f 7 8) 
(7 8 "a" #f) 
 
4> (f 7 8 9) 
(7 8 9 #f) 
 
5> (f 7 8 9 10) 
(f 7 8 9 10) 
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6> (f 7 8 9 10 11) 
(7 8 9 10) 

 Program 8.5    A number of calls of the function f. For clarity we define f as the first interaction.   

In the next section we will discuss a major shortcoming of the optional parameter mechanism. 

  

8.10.  Optional parameters of Scheme functions (2) 
Lecture 2 - slide 41 

Optional parameters, as discussed in Section 8.9 is not a perfect solution in all respects. On this 
page we will discuss a major weakness. 

 • Observations about optional parameters: 
• The function optional-parameter is a LAML function from the general library 
• The optional parameter idea works well if there is a natural ordering of the 

relevance of the parameters 
• If parameter n is passed, it is also natural to pass parameter 1 to n-1 

• The idea does not work well if we need to pass optional parameter number n, but 
not number 1 .. n-1 

 
  

 Keyword parameters is a good alternative to optional parameter lists in case many, 
'unordered' parameters need to passed to a function  

 

We have demonstrated how we simulate optional parameter via the 'rest parameter list' mechanism 
in Scheme. It is also possible to simulate a keyword parameter mechanism. In a LAML context, this 
is done with respect to the passing of attributes to the HTML mirror functions. 

For more information about the simulation of keyword parameters in HTML and XML mirror 
functions, please consult Section 26.2. 

  

8.11.  Closures 
Lecture 2 - slide 42 

Function objects are also called closures. In this section we will see why. 

 Functions capture the free names in the context of the lambda expression 
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The illustration below shows a closure. For a better visualization, you should visit the web version 
of the page, which uses animation to illustrate the capturing of free names.  

When we talk about a free name it is always relative to a given construct, such as a lambda 
expression. A free name in the construct is used, but not bound in the construct. The formal 
parameter names of a lambda expression are 'binding positions'. Thus, names in the body of a 
lambda expression, which correspond to formal parameter names of the lambda expressions, are not 
free names. 

   
Figure 8.1    A lambda expression with a free name y. The name y is 
bound outside the lambda expression. A closure is formed by associating 
the lambda expressions (the syntactic form) with the binding of the free 
names. 

In the table below we illustrate free names and closures. Notice that in the inner lambda expression, 
(lambda (txt) ...), both p and b are free names, whereas in the lambda expression bound to f 
only p is a free name. 

 

Expression Value  
(define f 
 (let ((b (lambda (x)  
            (string-append x ":" x)))) 
  (lambda (txt) (p (b txt))))) 
 
(f "A text") 

A text:A text 

(b "A text") A text 
(f (b "A text")) A text:A text 

Table 8.2    Examples of the closuring effect. In the first example b is 
locally bound to a function which replicates its parameter with a colon in 
between. f is bound to a function (the inner lambda) in which b refers to 
the string replicating function. Notice that outside this this context, b is 
the HTML mirror function that renders a text in bold face. 
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8.12.  Function definition in Scheme 
Lecture 2 - slide 43 

In Section 8.1 we studied definitions in general. In a definition we associate a name with a value 
through the evaluation of an expression. As already discussed there, we can define functions in the 
same way we associate names with other types of values. 

In this section we will study a particular twist on function definitions. 

 A function object can be bound to a name via define like any other kind of value. 

But we often use a slightly different, equivalent syntax for function definitions, where 
the 'lambda' is implicitly specified 

 

 

In Syntax 8.4 we show the ordinary way of defining a function. With this, f is bound to a function 
object. 

 
(define f (lambda (p1 p2) ...))  

 Syntax 8.4    The ordinary way to bind f to the value of a lambda expressions   

In Syntax 8.5 we show an alternative way of defining a function. The second element of the define 
form is a list, which corresponds to the calling profile of the function. The two definitions are fully 
equivalent, and it is a matter of style and personal preference which one to use. 

I typically use the form in Syntax 8.5 because it is a little more shallow (with respect to 
parentheses) than the one in Syntax 8.4. As another reason, it is nice to have the calling form as a 
constituent of the definition. It is often convenient to copy it out of the definition to some context, 
in which the function is to be called. 

 
(define (f p1 p2) ...)  

 

Syntax 8.5    An equivalent syntactic sugaring with a more shallow parenthesis structure. Whenever 
Scheme identifies a list at the 'name place' in a define form, it carries out the transformation 
(define (f p1 p2) ...) => (define f (lambda (p1 p2) ...)) . Some Scheme 
programmers like the form (define (f p1 p2) ...) because the calling form (f p1 p2) 
is a constituent of the form (define (f p1 p2) ...) 

 

 

  

8.13.  Simple web-related functions (1) 
Lecture 2 - slide 44 

We will here give a simple example of a web-related function. Much more interesting examples will 
appear later in the material. 
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The programs in Program 8.6 and Program 8.7 show the definition and a call of a www-document 
function, which abstracts the outer HTML elements. In the web version of the material you will, in 
addition, find an illustration with all the LAML details necessary to execute the example. 

(define (www-document the-title . body-forms) 
 (html 
  (head (title the-title)) 
  (body body-forms))) 

 
Program 8.6    The definition of a www-document function. The www-document function is 
useful if you want to abstract the HTML envelope formed by the elements html, head, title, and body. 
If you need to pass attributes to html or body the proposed function is not adequate. 

 
 

(www-document    
  "This is the document title" 
  (h1 "Document title") 
 
  (p "Here is the first paragraph of the document") 
 
  (p "The second paragraph has an" (em "emphasized item") 
      "and a" (em "bold face item")_".")) 

 Program 8.7    A sample application of the function www-document. Notice the way we pass a 
number of body contributions, which - as a list - are bound to the formal parameter body-forms.  

 

  

 

8.14.  Simple web-related functions (2) 
Lecture 2 - slide 45 

The example on this page shows an indent-pixel function, which indents a block of text a number of 
pixels to the right. 

In Program 8.8 you find a version which is implemented in terms of tables. 

(define (indent-pixels p . contents) 
  (table 'border "0" 
   (tbody 
     (tr  
      (td 'width (as-string p) "") 
      (td 'width "*" contents))))) 

 
Program 8.8    The definition of the indent-pixel function. This is a function which we use in 
many web documents to indent the contents a number of pixels relative to its context. Here we 
implement the indentation by use of a table, in which the first column cell is empty. As we will se, 
other possibilities exist. 

 

 

In Program 8.9 we show an alternative version of indent-pixels, which is implement by use of 
Cascading Style Sheets (CSS) features. 
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(define (indent-pixels p . contents) 
  (div 'css:margin-left (as-string p)  
    contents)) 

 
Program 8.9    An alternative version of theindent-pixel function. This version uses Cascading 
Style Sheets expressiveness. As it appears, this is a more compact, and more direct way of achieving 
our indentation goal.  

 
 

Below, in Program 8.10 we show a sample application of the indent-pixels function. The 
program in Program 8.10 is complete and self contained relative to the LAML libraries. 

In the web version of the material (slide or annotated slide view) you will find references to the 
generated documents. 

(load (string-append laml-dir "laml.scm")) 
(laml-style "simple-xhtml1.0-strict-validating") 
 
(define (indent-pixels p . contents) 
  (div 'css:margin-left (as-string p)  
    contents)) 
 
(write-html 'raw 
 (html 
  (head (title "Indent Pixel Example")) 
  (body 
 
    (p "Here is some initial text") 
 
    (indent-pixels 45 
       (p "First paragraph of indented text") 
       (p "Second paragraph of indented text") 
    ) 
 
    (p "Here is some final text")))) 

 Program 8.10    A sample application of indent-pixel with some initial LAML context (software 
loading). Notice the use of the XHTML mirror.  
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8.15.  Function exercises 
Lecture 2 - slide 46 

In this last section of the chapter we provide a couple of extra exercises. 

 
 Exercise 2.7. Colors in HTML 

In HTML we define colors as text strings of length 7: 

    "#rstuvw" 

The symbols r, s, t, u, v, and w are all hexadecimal numbers between 0 and f (15). rs is in that way 
the hexadecimal representation for red, tu is the code for green, and vw is the code for blue. 

As an example, the text string 

    "#ffffff" 

represents white and 

    "#ff0000" 

is red. 

In Scheme we wish to represent a color as the list 

    (color r g b) 

where color is a symbol, r is number between 0 and 255 which represents the amount of red, and g 
and b in a similar way the amount of green and blue in the color. 

Write a Scheme function that transforms a Scheme color to a HTML color string. 

It is a good training to program the function that converts decimal numbers to hexa decimal 
numbers. I suggest that you do that - I did it in fact in my solution! If you want to make life a little 
easier, the Scheme function (number->string n radix) is helpful (pass radix 16 as second 
parameter). 

 
 Exercise 2.8. Letter case conversion 

In many web documents it is desirable to control the letter case of selected words. This allows us 
to present documents with consistent appearances. Therefore it is helpful to be able to capitalize a 
string, to transform a string to consist of upper case letters only, and to lower case letters only. Be 
sure to leave non-alphabetic characters untouched. Also, be sure to handle the Danish characters 
'æ', 'ø', and 'å' (ASCII 230, 248, and 229 respectively). In addition, let us emphasize that we want 
functions that do not mutate the input string by any means. (It means that you are not allowed to 



 55

modify the strings passed as input to your functions). 

Write functions capitalize-a-string, upcase-a-string, downcase-a-string for these 
purposes. 

As examples of their use, please study the following: 

    (capitalize-a-string "monkey") => "Monkey" 
    (upcase-a-string "monkey") => "MONKEY" 
    (downcase-a-string "MONkey") => "monkey" 

Hint: I suggest that you program the necessary functions yourself. Convert the string to a list of 
ASCII codes, do the necessary transformations on this list, and convert the list of modified ASCII 
codes back to a string. The Scheme functions list->string and string->list are useful. 

Hint: If you want to make life a little easier (and learn less from this exercise...) you can use the 
Scheme functions char-upcase and char-downcase, which work on characters. But these 
functions do maybe not work on the Danish letters, so you you probably need some patches. 
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