21. Overloaded Operators

In this section we will see how we can use the aipes of the C# language on instances of our oassels,
or on values of our own structs.

21.1. Why operator overloading?

Lecture 6 - slide 2

In this section we will describe how to program i@tiens that can be called in expressions that makeof
the conventional operators (such+ag, >>, and!) of C#. Thus, in a client of a class C, we wilbyide for
notation such asc1 + ac2 * ac3 instead OkCl. Pl us(aC2. Ml t (aC3)) or (with use of class methods)
C. Plus(aCl, C Milt(aC2,aC3)).

Use of operators provides for substantial notatiooavenience in certain classes

When operator notation is natural for objects dues of type C, clients of C can often be prograchmuih
a more dense and readable notation. The exampliegram 21.1 (only on web) provides additional
motivation. The classper at or sOr Not , (see Program 21.1 on the web) together withsssla nt (see
Program 21.2 on the web) motivate the use of opey@t the context of a complete class.

21.2. Overloadable operators in C#

Lecture 6 - slide 3
We have already once studied the operator tallz#tpfee Section 6.7. In Table 21.1 below we show a

version of the operator table of C# (with operggority and associativity) in which we have emphed all
the operators that can be overloaded in C#.

165

Level |Category Operators
14 |Primary

13 |Unary + - ! ~ HX --X true false
12 |Multiplicative * / %

11 Additive +

10 Shift < >
Relational ancl

9 . < <= > >=
Type testing

8 Equality == I=
Logical/bitwise

&

K And
Logical/bitwise,

6
Xor

5 Logical/bitwise |
Or

4 Conditional
And

3 Conditional Or
2 Conditional

1 Assignment

Table 21.1 The operator priority table of C#. The operatorattban be
overloaded directly are emphasized.

Associativity
left to right

left to right
left to right
left to right
left to right

left to right
left to right

left to right
left to right
left to right

left to right

left to right
right to left

right to left

All the gray operators in Table 21.1 cannot be lmasted directly. Many of them can, however, be
overloaded indirectly, or defined by other means. WMl now discuss how this can be done.

A notation similar ta[x] (array indexing) can be obtained by use of indexaze Chapter 19.

The conditional (short circuited) operatagsand| | can be overloaded indirectly by overloading the
operators and| . In addition, the operators calledue andf al se must also be providedr ue(x) tells if x

counts as boolean trueal se(x) tells if x counts as boolean false. (Notice thdelongs to the type - class

or struct - in which we have defined the operatdrkg operator&s and| | are defined by the following

equivalences:

e x & y lisequivalenttofalse(x) ? x : (x &y)
e x || y isequivalenttotrue(x) ? x : (x|)

Thus, wherx && y is encountered we first evaluate the expressiore(x) . If the value idrue, x is
returned. If it isfalse y is also evaluated, and the valuexofs y becomes & y. A similar explanation

applies forx || .

166

You can define the unary ue andf al se operators in your own classes, and hereby coiftitod object is
considered to biue or falsein some boolean contexts. If you define one ofithgou will also have to
define the other. Recall that an expression ofdgh@ a ? b : ¢ uses the conditional operatorwith
the meaning if a then b el se c.

All the assignment operators, apart from the basgignment operater are implicitly overloadable. As an
example, the assignment operatselis implicitly overloaded when we explicitly ovedd the multiplication
operator:.

The type cast operatom) x can in reality also be overloaded. In a givenlag/ou can define explicit
and/or implicit conversion operators that convestand from C. We will see an example of an exptige
conversion in Program 21.3.

21.3. An example of overloaded operators: Interval

Lecture 6 - slide 4

We will now study the typent erval . This type allows us to represent and operatei@mials of integers.
Thelnterval type makes a good case for illustration of ovetbmhoperators. We program all interval
operations in a functional style. We want interval®e non-mutable, and the type is therefore jprogned
as a struct.

An interval is characterized by two integer endhpelirom andto. The interval from - to] denotes the

interval that starts ifrom and goes t¢o. The notationffom - to] is an informal notation which we use to
explain the the idea of intervals. In a C# progrtm,interval from - to] is denoted by the expressioew
Interval (fromto). Notice thafromis not necessarily less tham The following are concrete examples:
[1 - 5] represents the sequence 1, 2, 3, 4, apd 5. 1] represents the sequence 5, 4, 3, 2, and 1. These
two sequences are different.

In Program 21.3 we see the strueter val . The private instance variabliesomandt o represent the
interval in a simple and straightforward way, ane tonstructor is also simple. Just after the cootir
there are two properties;omandTo, that access the end points of the interval. i;arsion of the type it
is not possible to construct an empty interval. Wdee already dealt with this weakness in Sectiod ($ee
Program 16.7 versus Program 16.8) in the contefetadbry methods.

After the two properties we have highlighted a nemtif overloaded operators. These are our maireisite
in this section. Notice the syntax for definitiohtioe operators. There are two definitions of theperator.
One of the formani nterval + i and one of the form + anl nterval . Both have the same meaning,
namely addition of to both end-points. Thus - 5] + 3and3 + [1 - 5] are both equal to the interval
[4 - 8].

In similar ways we define multiplication of intefgaand integers. We also define subtraction oh¢egier
from an interval (but not the other way around)eBhift operators< and>> provide nice notations for
moving one of the end-points of an interval. Thus; 5] >> 3 is equal to the intervgh - 8].

Finally, the unary prefix operatorreverses an interval (internally, by making aeinal with swapped end-
points). Thusi[1 - 5] is equal to the intervab - 1].

The private clasent er val Enuner at or (Shown only in the web version) and the metbedenunrer at or
make it possible to traverse an interval in a carer way with use ofor each. Interval traversal is what

167

makes intervals useful. This is illustrated in Rerg 21.4. We will, in great details, discuss
I nt erval Enurrer at or later in this material, see Section 31.6 - inipakar Program 31.9.

1 wusing System
2 using System Col | ecti ons;

public struct Interval{

public Interval (int from int to){

8
4
5
6 private readonly int from to;
7
8
9 this.from= from

10 this.to = to;

1}

12

13 public int Fron{

14 get {return from}

15 }

16

17 public int To{

18 get {return to;}

19

20

21 public int Length{

22 get {return Math. Abs(to - from + 1;}

23 }

24

25 public static Interval operator +(Interval i, int j){
26 return new Interval (i.From+ j, i.To + j);

27 '}

28

29 public static Interval operator +(int j, Interval i){
30 return new Interval (i.From+ j, i.To + j);

Sl)

32

33 public static Interval operator >>(Interval i, int j){
34 return new Interval (i.From i.To + j);

35 }

36

37 public static Interval operator <<(Interval i, int j){
38 return new Interval (i.From+ j, i.To);

39 }

40

41 public static Interval operator *(Interval i, int j){
42 return new Interval (i.From* j, i.To * j);

43 }

44

45 public static Interval operator *(int j, Interval i){
46 return new Interval (i.From* j, i.To * j);

47 1}

48

49 public static Interval operator -(Interval i, int j){
50 return new Interval (i.From- j, i.To - j);

Si 1}

52

53 public static Interval operator !(Interval i){

54 return new Interval (i.To, i.From;

88 |}

56

57 public static explicit operator int[] (Interval i){
58 int[] res = new int[i.Length];

59 for (int j =0; j <i.Length; j++) res[j] =i[j];
60 return res;

61 }

168

private class Interval Enunerator: | Enunerator{
[/ Details not shown in this version

}

publ i c | Enumerat or Get Enunmerator (){
return new | nterval Enunerator (this);

}

Program 21.3 The struct Interval

Take a look at Program 21.4 in which we use inlenBased on the constructed intervals andi v2 we
write expressions that involve intervals. Theseadireighlighted in Program 21.4. Let me explaia th
expression (3 + liv2 * 2). When we evaluate this expression we adhere toal@recedence rules and
normal association rules of the operators. We dacimange these rules. Therefore, we first evaluate,
which is[5 - 2]. Next we evaluatei v2 * 2, which is[10 - 4]. To this interval we add 3. This gives the
interval[13 - 7]. Finally we reverse this interval. The final vala¢7 - 13].

Also emphasized in Program 21.3 we sh@®&{ 0] andi v3[i v3. Lengt h-1] . These expressions use interval
indexers. In Exercise 6.1 it is an exercise to @oythis indexer.Emphasized wiihue in Program 21.3 and
Program 21.4 we show how to program and use arncéxgpe cast fromnterval toint[].You should
follow the evaluations of all highlighted expressan Program 21.4 and compare your results wih th
program output in Listing 21.5.

usi ng System
public class app {
public static void Min(){

Interval ivl = new Interval (17, 14),
iv2 = new Interval (2,5),
iv3;

foreach(int k in (3 + ivl - 2)){
Console. Wite("{0,4}", k);

}
Consol e. Wi teLine();

foreach(int k in (3 + liv2 * 2)){
Console. Wite("{0,4}", k);

}
Consol e. Wi teLine();

ivd =1(3 +liv2 * 3) >> 2 ;
Console. WiteLine("First and last in iv3: {0}, {1}",
iv3[0], iv3[iv3.Length-1]);

int[] arr = (int[])ivVS3;
foreach(int j in arr){

Consol e. Wite("{0,4}", j);
}

Program 21.4 A client program of struct Interve

169

15 16 17 18
7 8 9 10 11 12 13
First and last in iv3: 9, 20
9 10 11 12 13 14 15 16 17 18 19 20

Listing 21.5 Output from the interval applicatio

In Program 21.6 we show yet another example ofraragiing overloaded operators. We overlead =, <,
and>. This example brings us back to the playing cédscwhich we have discussed already in Program
12.7 of Section 12.6 and Program 14.3 of Sectio.14

Emphasized with colors in Program 21.6 we showattpes that compare two cards. Notice, as above, tha
the operator definitions always are static. Alstagothat if we define= we also have to define- . The==
operator is defined via thegual s methods, which is redefined in class d such that it provides value
comparison otar d instances. If we redefirejual s we must also redefinet HashCode. All together, a lot
of work! Similarly, if we define<= we have also have to define .

Please notice that our redefinitiongafual s in Program 21.6 is too simple for a real-life manm. In Section
28.16 we will see the general pattern for redeéiniof theeEqual s instance method.

usi ng System

public enum CardSuite { Spades, Hearts, C ubs, D anponds };

public enum Cardvalue { Ace = 1, Two = 2, Three = 3, Four = 4, Fi
Six =6, Seven =7, Eight =8, Nine =9,
Jack = 11, Queen = 12, King = 13};

public class Card{

private CardSuite suite;
private CardVal ue val ue;

/1 Sonme nethods are not shown in this version

public override bool Equal s(Object other){
return (this.suite == ((Card)other).suite) &%
(this.value == ((Card)other).val ue);

}

public override int GetHashCode(){
return (int)suite ~ (int)val ue;
}

public static bool operator ==(Card cl, Card c2){
return cl. Equal s(c2);

}

public static bool operator !=(Card cl1, Card c2){
return !(cl. Equal s(c2));
}

public static bool operator <(Card cl, Card c2){
bool res;
if (cl.suite < c2.suite)
res = true;
else if (cl.suite == c2.suite)
res = (cl.value < c2.val ue);
el se res = fal se;
return res;

170

}

public static bool operator >(Card cl1l, Card c2){
return !'(cl < c2) & !(cl == c2);
}
}

Program 21.6 The class PlayingCard with relational
operators.

The details left out in line 14 of Program 21.6 tanseen in the web-version of the paper.

Exercise 6.1. Interval indexer

It is recommended that you use the web editiom@®iaterial when you solve this exercise. The web
edition has direct links to the class source filesich you should use as the starting point.

Thel nterval type represents an oriented intervalojm- t o] of integers. We use theit erval example
to illustrate the overloading of operators. If yoave not already done so, read about the idea dnen
structi nt erval in the course teaching material.

In the client of structnt erval we use an indexer to access elements of the alté&ror some interval,
the expression[0] should access the omvalue ofi , andi [i . Lengt h- 1] should access the-value of
i

Where, precisely, is the indexer used in the goleEmt class?

Add the indexer to the strucht er val (getter only) which accesses element numifer<=j <=
i . Lengt h) of an interval .

Hint: Be careful to take the orientation of the intenm&b account.

Does it make sense to program a setter of thisxar@e

Exercise 6.2. An interval overlap operation

It is recommended that you use the web editiom®iaterial when you solve this exercise. The web
edition has direct links to the class source filesich you should use as the starting point.

In this exercise we continue our work on stnugater val , which we have used to illustrate overloaded
operators in C#.

Add ani nt eral operation that finds the overlap between two wreks: Your starting point should be the
struct Interval. In the version of structt er val , provided as starting point for this exercisegmaéls may
be empty.

Please analyze the possible overlappings betwesimtervals. There are several cases that need
consideration. The fact thatit er val is oriented may turn out to be a complicatingdaat the solution.
Feel free to ignore the orientation of intervaly@ur solution to this exercise.

Which kind of operation will you chose for the olegaping operation in C# (method, property, indexer,

171

operator)?
Before you program the operation in C# you shoelsigh thesignatureof the operation.

Program the operation in C#, and test your solutiamni nt erval client program. You may chose to
revise the Interval client program from the teaghimaterial.

21.4. Some details of operator overloading

Lecture 6 - slide 5

Below we summarize the syntax of operator definitwhich overloads a predefined operators symbol.

public static return-type operator symnbol (formal-par-1ist)({
body- of - oper at or

}

Syntax 21.1 The C# syntax for definition of an overloaded
operator.

There are many detailed rules that must be obsaeviied we overload the predefined operator symbols.
Some of them were mentioned in Section 21.3. Othr$rought up below.

» Operators must be public and static
« One or two formal parameters must occur, correspgrtd unary and binary operators
« At least one of the parameters must be of the typehich the operator belongs
« Only value parameters apply
« Some operators must be defined in pairs (eithee moroth):
e == and = < and > <= and >=
« The special unary boolean operatarge andf al se define when an object is playing the role as
true or falsein relation to the conditional logical operators
« Overloading the binary operatop causes automatic overloading of the assignmematpep=

This concludes our coverage of operator overloadilogice that we have not discussed all detaikhigf
subject. You should consult a C# reference marasdUufl coverage.

172

22. Delegates

In this chapter we will discuss the concept of gates. Seen in relation to similar, previous objented
programming languages (such as Java and C++)sthiséw topic. The inspiration comes from functiona
programming where functions diest class valueslf x is a first class value can be passed as parameter,
can be returned from functions, axdan be part of data structures. With the introdncof delegates,
methods become first class values in C#. We wlane this "exciting world be new opportunities'tire
next few sections.

22.1. Delegates in C#

Lecture 6 - slide 7

The idea of a delegate in a nutshell is as follows:

A delegate is a type the values of which consishethods

Delegates allow us to work with variables and paans that contain methods

Thus, a delegate in C# defines a type, in the seayeas a class defines a type. A delegate reflbets
signature of a set of methods, not including théhod names, however. A delegate is a referenceityQe.
It means that values of a delegate type are aatesseeferences, in the same way as an objectlaiss
always is accessed via a reference. In particular, is a possible delegate value.

In Program 22.hummeri cFuncti on is the name of a new type. This is the type otfioms that accept a
doubl e and returns aoubl e. The static methogr i nt Tabl eCOf Funct i on takes aunmeri cFunction f as

first parametereri nt Tabl eOf Funct i on prints a table of values within a given rangeérom t o] and with a
given granularityst ep. In themai n method we show a number of activation®afnt Tabl eOf Funct i on.

The first three activations generate tables oftak-known functions log, sinus, and abs. Noticat tthese
functions belong to theumrer i cFuncti on delegate, because they are all are functions fikami e to

doubl e. The last activation generates a table of the oglthbi ¢, as we have defined it in Program 22.1. It
is again crucial thatubi ¢ is a function frontoubl e todoubl e. If Cubic had another signature, such @s

-> int Ordoubl e x double -> doubl e, it would not fit with theNuner i cFuncti on delegate.

usi ng System
public class Application {
publ i c del egate doubl e Numeri cFunction(doubl e d);
public static void PrintTabl e Functi on(Nuneri cFunction f,
string fnane,
doubl e from double to,
doubl e step){
doubl e d;
for(d = from d <=to; d += step){
Consol e. WiteLine("{0,10}({1,-4:F3}) = {2}", fnane, d, f(d));
}

Consol e. Wi teLine();

173

public static doubl e Cubic(double d){
return d*d*d,

}

public static void Min(){
Pri nt Tabl eOf Functi on(Mat h. Log, "log", O
Pri nt Tabl eOf Functi on(Math. Sin, "sin", 0.0,
Pri nt Tabl eOf Functi on(Vat h. Abs, "abs", -1.0, 1.0, 0.1);

Pri nt Tabl eOf Functi on(Cubic, "cubic", 1.0, 5.0, 0.5);

/1 Equivalent to previous:
Pri nt Tabl e Functi on(del egate (double d){return d*d*d;},
"cubic", 1.0, 5.0, 0.5);

Program 22.1 A Delegate of simple numeric functio

In line 31 of Program 22.1 notice theonymous function

del egate (double d){return d*d*d;}

The function has no name - it is anonymous. Thetfan is equivalent with the methadbi c in line 20-22,
apart from the fact that it has no name. It is wotghy that weon the flyare able to write an expression the
value of which is a method that belongs to thegheke typenuner i cFuncti on. In C#3.0 the notation for
anonymous functions has been streamlined to tHandfda expressions. We will touch on this topic in
Section 22.4. We outline the output of Program 22 listing 22.2 (only on web). We do not showtak
output lines, however.

Things get even more interesting in Program 22h@. flinction to watch isonpose. It accepts, as input
parameters two numeric functionsndg, and it returns (another) numeric function. Thesids to return the
functionf o g. This is the function that returns f(g(x)) whemsigiven x as input.

Notice the expressiotorpose(Cubi c, M nus3) in Mai n. This is a function that we pass as input to the

Pri nt Tabl eCf Funct i on, which we already have discussed. In order to @@ihe functiorconpose(Cubi c,
M nus3) we watch the program output in Listing 22.4. Péeaerify for yourself thatonpose(Cubi c,

M nus3) is the function which subtracts 3 from its inpand thereafter calculates the cubic function oh tha
(reduced) number.

using System
public class Application {
publ i c del egate doubl e Numeri cFunction(doubl e d);
public static NunericFuncti on Conpose
(Nureri cFunction f, NumericFunction g){

return del egate(double d){return f(g(d));};
}

public static void PrintTabl eXf Functi on
(Nureri cFunction f, string fnane,
doubl e from double to, double step){
doubl e d;

for(d = from d <=to; d += step){

174

Consol e. WiteLine("{0,35}({1,-4:F3}) = {2}", fnane, d, f(d));

}
Consol e. Wi teLine();

}

public static doubl e Square(double d){
return d*d;

}

public static doubl e Cubic(double d){
return d*d*d,

}

public static double M nus3(double d){
return d-3;

}

public static void Min(){
Pri nt Tabl eOf Functi on(Conpose(Cubi c, M nus3),
"Cubic of Mnus3", 0.0, 5.0, 1.0);

Pri nt Tabl eCf Functi on(
Conmpose(Squar e, del egate(doubl e d){
returnd >2? -d: 0;}),
"Square of if d>2 then -d else 0", 0.0, 5.0, 1.0);

Program 22.3 The static method Compose in class
Application.

of M nus3(0, 000)
of M nus3(1, 000)
of M nus3(2, 000)
of M nus3(3, 000)
of M nus3(4, 000)
of M nus3(5, 000)

Cubi
Cubi
Cubi
Cubi
Cubi
Cubi

O0O000O0
OO

Square of if d>2 then -d el se 0(0, 000)
Square of if d>2 then -d el se 0(1, 000)
Square of if d>2 then -d el se 0(2,000)

if

f

f

© O oo

Squar e of d>2 then -d el se 0(3,000)
Squar e of d>2 then -d el se 0(4,000)
Squar e of d>2 then -d el se 0(5,000)

16
25

Listing 22.4 Output from the Compose delegate
program.

What we have shown above gives you the flavor né€fional programming. In functional programming we
often generate new functions based on existingtioms, like we did with use afonpose.

Delegates make it possible to approach the furatiprogramming style

Methods can be passed as parameters to, and basmesults from other methods

Exercise 6.3. Finding and sorting elements in an array

In this exercise we will work with searching andtsw in arrays. To be concrete, we work on anyaofa
typePoi nt , whereroi nt is the type we have been programming in earliereses.

175

Via this exercise you are supposed to ldaw to pass a delegate to a metisodh asi nd andsort . The
purpose of passing a delegateitad is to specifywhich point we are looking for

Make an array ofoi nt objects. You can, for instance, use this versiariass Point. You can also use a
version that you wrote as solution to one of the/mus exercises.

Use the static metha® st em Array. Fi nd to locate the first point in the array that sadisfthe condition:
The sum of the x and y coordinates is (very closedro

The solution involves the programming of an appedprdelegate in C#. The delegate must be at
predicate a method that takesrai nt as parameter and returns a boolean value.

Next, in this exercise, sort the list of pointsuse of one of the statBort methods irsyst em Arr ay.

Take a look at theort methods irsyst em Array. There is an overwhelming amount of these! We will
use the one that takesamar i son delegateconpari son<T>, as the second parameter. Please find this
method in your documentation browser. Why do weldrniegass @onpari son predicate to theor t
method?

Conpar i son<Poi nt > is a delegate that compares two points psagndp2. Pass an actual delegate
parameter t&ort in which

pl <= p2 if and only if pl.X + pl.Y <= p2. X + p2.Y

Please notice that a comparsion between pl andup2return an integer. A negative integer mearis tha
plis less than p2. Zero means that pl is equ#l.té positive integer means that pl is greaten {ia

Test run you program. Is yomei nt array sorted in the way you excepts?

Exercise 6.4. How local are local variables and formal parameters
When we run the following program

usi ng System
public class Application {

publ i ¢ del egate doubl e Numeri cFunction(doubl e d);
static double factor = 4.0;

public static NumericFunction MakeMul tiplier(double factor){
return del egate(doubl e input){return input * factor;};
}

public static void Min(){
Nuneri cFunction f = MakeMultiplier(3.0);
doubl e input = 5.0;

Consol e. WiteLine("factor = {0}", factor);
Consol e. WiteLine("input = {0}", input);
Consol e. WiteLine("f is a generated function which multiplies its input with
factor");
Console. WiteLine("f(input) = input * factor = {0}", f(input));
}

}

176

we get this output

factor = 4

input =5
f is a generated function which multiplies its input with factor
f(input) = input * factor = 15

Explain!

22.2. Delegates that contain instance methods

Lecture 6 - slide 8

The delegates in Section 22.1 contained static adstiStatic methods are activated without a regivi
object. When we put an instance methoohto a delegate object, we need to find a wayrtwide the
receiver object om. We can, in principle, provide this object as pdithe activation of the delegate, or we
can aggregate it together with the method itselC# the latter solution has been chosen.

In Section 22.1 we show a relatively trivial classsenger . A messenger object stores a message of type
Message. Message IS a delegate, shown frurple. Thebosend method calls the method in the delegate.

using System
public del egate void Message(string txt);
public class Messenger{

private string sender;
private Message nmessage;

public Messenger(string sender) {
thi s. sender = sender;
message = nul | ;

}

public Messenger(string sender, Message alMessage)
thi s. sender = sender;
nessage = aMessage;

}

public void DoSend() {
nmessage(" Message from" + sender);

}
}

Program 22.5 A Messenger class and a Message
delegate.

The class is even more trivial. It just holds some state andnstance method callest hodA.

using System
public class A{

private int state;

177

public A(int i){
state = i;

}

public void MethodA(string s){
Consol e. WiteLine("A: {0}, {1}", state, s);
}
}

Program 22.6 A very simple class A with an instance metho
MethodA.

In the clasgppl i cati on we create some instances of clasghe clas®yppl i cati on is shown in Program
22.7. For now we only use one of the instances Wfe pass2. Met hodA to themessage (delegate)

parameter of theessenger constructor. With this we package both the ohjefdrred to bya2 and the
methodmet hodA together, and it now forms part of the state efibwwvessage object. When the message
object receives theoSend message it activates its delegate. From the oinuisting 22.8 we see that it is

in fact the instance methadet hod in the object2 (with st at e equal to 2), which is called via the delegate.

usi ng System
public class Application{

public static void Min(){

A al = new A(1),
a2 = new A(2),
a3 = new A(3);

Messenger m = new Messenger ("CS at AAU', a2. Met hodA);

m DoSend() ;

Program 22.7 An Application class which accesses an insta
method in class A.

A: 2, Message from CS at AAU
Listing 22.8 Output from Main of class Applicatio

So now we have seen that a delegate may contaibjaat, which consists of a receiver together &ith
method to be activated on the receiver.

In Section 22.3 below we will see that this is tihat whole story. A delegate may in fact contalisteof
such receiver/method pairs.

22.3. Multivalued delegates

Lecture 6 - slide 9
The classessenger in Program 22.9 is an extension of clesssenger in Program 22.5. The body of the

methodi nst al | Message shows that it is possible to add a method to egddé. Behind the scene, a delegate
is a list of methods (and, if necessary, receigeas). The- operator has been overloaded to work on

178

delegates. It adds a method to a delegate. Sigithe- operator has been overloaded to remove a method
from a delegate.

using System
public del egate void Message(string txt);
public class Messenger{

private string sender;
private Message nessage;

public Messenger(string sender) {
this.sender = sender;
message = nul | ;

}

public Messenger(string sender, Message aMessage)
this.sender = sender;
nessage = aMessage;

}

public void Install Message(Message nes){
thi s. nessage += nes;

}

public void Unlnstall Message(Message nes){
thi s. nessage -= nes;

}

public void DoSend() {
nmessage(" Message from" + sender);

Program 22.9 Install and Unlinstall message methods in the
Messenger class.

The class, which is used in Program 22.10, can be seendgrBm 22.6.

In the clasgppl i cati on in Program 22.10 instantiates a numbek objects and a singhessenger object.
The idea is to add and remove instance methodeteésenger object, and to activate the methods in the
Messenger object via thedoSend method in line 28-31 of Program 22.9.

In line 11 of Program 22.10 we install. Met hodA in m which already (from theessenger construction)
containsa2. AMet hod. In the program output in Listing 22.11 this igealed in the first two output lines.

Next we instalk3. AVet hod twice inm At this point in time the delegate ancontains four methods. This is
seen in the middle section of Listing 22.11.

Finally, we uninstalh3. AMet hod andal. Anet hod, leaving two methods in the delegate. This is shiowthe
last section of output in Listing 22.11.

179

usi ng System
public class Application{

public static void Min(){

A al = new A(1),
a2 = new A(2),
a3 = new A(3);

Messenger m = new Messenger ("CS at AAU', a2. Met hodA);
m | nst al | Message(al. Met hodA) ;

m DoSend() ;

Consol e. Wi teLine();

m | nst al | Message(a3. Met hodA) ;
m | nst al | Message(a3. Met hodA) ;
m DoSend() ;

Consol e. Wi teLine();

m Unl nst al | Message(a3. Met hodA) ;
m Unl nst al | Message(al. Met hodA) ;
m DoSend() ;

Program 22.10 An Application class

Message from CS at AAU
Message from CS at AAU

=N

Message from CS at AAU
Message from CS at AAU
Message from CS at AAU
Message from CS at AAU

CORCON g1

Message from CS at AAU
, Message from CS at AAU

>x> 2222 22X

w N

Listing 22.11 Output from Main of class Applicatio

22.4. Lambda Expressions

Lecture 6 - slide 10

A lambda expression is a value in a delegate Ypéegates were introduced in Section 22.1. Thetioota
of lambda expression adds some extra conveniertbe taotation of delegates. Instead of the syntax
delegate(formal-parameters){bodi@mbda expressions use the syrftaral-parameters> body => is an
operator in the language, see Section 6.7. Iti;acessary to give the types of the formal pararaéh a
lambda expression. In addition, the body of a laanéxpression may be an expression. In a delegate, t
body must be a statement block (a command).

By the way, why is it called lambda expressionsfhhdal is a Greek letter, like alphaand betar. The
notion of lambda expressions come from a branchathematics calle@mbda calculusin lambda

calculus lambda expressions, suclhas+1, is used as a notation for functions. The parictunctionix.
x+1 adds one to its argument x. Lambda expression lrexgght into early functional programming
language, most notably Lisp. Since then, "lambgaession” has been the name of those expressidol wh
evaluate to function values.

180

In Program 22.12 below we make list of five equevdlifunctions. The first one - line 12 - uses Clegate
notation, as already introduced in Section 22.E @t one - line 16 - is a lambda expression evritts
concise as possible. The three in between - lind4,3and 15 - illustrate the notational transiticmm
delegate notation to lambda notation.

using System
usi ng System Col | ecti ons. Generi c;

cl ass Progran{
publ i c del egate doubl e Numeri cFunction(doubl e d);
public static void Min(){

Nurrer i cFunction[] equival ent Functions =
new Nuneri cFunction[]{
del egate (double d){return d*d*d;},
(double d) => {return d*d*d;},
(doubl e d) => d*d*d,
(d) => d*d*d,
d => d*d*d
b
f oreach(Numeri cFunction nf in equival ent Functi ons)
Consol e. WiteLi ne("NunericFunction({0}) = {1}", 5, nf(5));

Program 22.12 Five equivalent functions - from anonymous
method expressions to lambda expressions.

In Program 22.12 notice that we are able to orgafive functions in a data structure, here an airbge
19-12 we traverse the list of functions inaeach control structure. Each function is bound to teal
namenf , andnf (5) calls a given function on the number 5.

In Listing 22.13 (only on web) we show the outpliListing 22.13. As expected, all five calis(5) return
the number 125.

The items below summarize lambda expressions @tioel to delegates in C#:

« The body can be a statement block or an expression

« Uses the operater which has low priority and is right associative

« May involve implicit inference of parameter types

« Lambda expressions serve as syntactic sugar felegate expression

181

182

23. Events

The event concept is central in event-driven pnognang. Programs with graphical user interfaces are
event-driven. With the purpose of discussing evemtsvill see a simple example of a graphical user
interface at the end of this chapter.

23.1. Events

Lecture 6 - slide 12

In a program, aeventcontains some actions that must be carried ouhwleevent is triggers

In command-driven programming, the computer prortipgsuser for input. When the user is prompted the
program stops and waits a given program locationeia command is issued by the user, the program is
continued at the mentioned location. The progralhamalyze the command and carry out an appropriate
action.

In event-driven programming the program reactsvbat happens on the elements of the user intertace
more generallywhat happens on some selected state of the progkéran a given event is triggered the
actions that are associated with this particul@néeare carried out.

Inversion of control

Don't call us - we call you

The "Don't call us - we call you" idea is due te tibservation that the operations called by thateve
mechanism is not activated explicitly by our owogmam. The operations triggered by events areccalfe
the system, such as the graphical user interfaceework. This is sometimes referred toragrsion of
control.

Below, we compare operations (such as methodsgearts.

+ Event
» Belongsto aclass
- Contains one or more operations, which are calleelhvthe event igiggered
» The operations in the event aaled implicitly
« Operation
« Belongs to a class
« Iscalled explicitly- directly or indirectly - by other operations

In the following sections we will describe the everechanism in C#. Fortunately, we have alreadyemad
the preparations for this in Chapter 22, becausevant can be modelled as a variable of a delaégage

183

23.2. Events in C#

Lecture 6 - slide 13

In C# an event in some class C is a variable aflegate type in C. Like classes, delegates areerefe
types. This implies that an event holds a referéo@m instance of a delegate. The delegate isaéd on
the heap.

From inside some class, an event is a variabledelegate type.
From outside a class, it is only possible to addrteemove from an event.

Events are intended to providetifications typically in relation to graphical user interface
The following restrictions apply to events, comphi@ variables of delegate types:

« An event can only be activated from within the slaswhich the event belongs
« From outside the class it is only possible to awith(+=) or subtract (with =) operations to an
event.
« Itis not possible to 'reset' the event with anrad, assignment

In thesyst emnamespace there exists a generic delegate GabedHandl er <TEVent Ar gs>, which is
recommended for event handling in the .NET framéw®hus, instead of programming your own delegate
types of your events, it is recommended to usdegdee constructed froBvent Handl er <TEVent Ar gs>.
TheEvent Handl er delegate takes two arguments: The object whiclergéed the event and an object which
describes the event as such. The latter is asstormra subclass of the pre-existing classt Ar gs. For
more information abowvent Handl er <TEVent Ar gs> consult the documentation of the generic

Event Handl er delegate. For details on generic delegates (tgpenpeterized delegates) see Section 43.2.

23.3. Examples of events

Lecture 6 - slide 14

In this section we will see examples of progranag thake use of events.

First, in Program 23.1 we elaborate the class, which we have met several times beforeSsegon 10.1
Section 12.5, and Section 16.3.

In Program 23.1 theoss operation of thei e class triggers a particular event in case it t$se sixes in a
row, see line 30-31.

usi ng System
usi ng System Col | ecti ons. Generi c;

public del egate void Notifier(string nessage);
public class Die {

private int nunber O Eyes;
private Random r andomNumber Suppl i er;

184

private int maxNunber O Eyes;
private List<int> history;
public event Notifier twoSi xesl nARow;,

public int Nunber O Eyes{
get {return nunmber Of Eyes;}

public Die (): this(6){}

public Die (int maxNunber O Eyes) {
randomNunber Suppl i er = new Randon{unchecked((i nt) Dat eTi ne. Now. Ti cks));
thi s. maxNurmber Of Eyes = maxNumber Of Eyes;
nunber O Eyes = randonmNunber Suppl i er. Next (1, maxNunber Of Eyes + 1);
hi story = new List<int>();
hi st ory. Add(nunber O Eyes) ;
}

public void Toss (){
nunber O Eyes = randonmNunber Suppl i er. Next (1, maxNunber Of Eyes + 1);
hi st ory. Add(nunber O Eyes) ;
i f (DoWeHaveTwoSi xesl nARow(hi story))
t woSi xesl nARow(" Two sixes in a row');
}

private bool DoWeHaveTwoSi xesl nARow(Li st <i nt> hi story){
int histLength = history. Count;
return histlLength >= 2 &&
hi story[histLength-1] == 6 &&
hi story[hi st Lengt h-2] == 6;
}

public override String ToString(){
return String. Format ("Die[{0}]: {1}", maxNumber Of Eyes, Nunber O Eyes);

}
}

Program 23.1 The die class with history and dieNotifi

In Program 23. Mot i fi er is a delegate. Thuspti fier is a type.

t woSi xesl nARow IS an event - analogous to an instance variableypeNoti fi er . Alternatively, we could
have used the predefinedent Handl er delegate (see Section 23.2) insteatoof fi er . The event

t woSi xesl nARow iS public, and therefore we can add operationBigoevent from clients afi e objects. In
line 9-11 of the classi ceApp, shown in Program 23.2, we add an anonymous deléga

d1. t woSi xesl nARow, which reports the two sixes on the console.

Notice the keywordévent ", used in declaration of variables of delegate$yfor event purposes. It is
tempting to think of évent " as a modifier, which gives a slightly special senics to aNot i fi er delegate.
Technically in C#, howeveeyent is not a modifier. The keyworglent signals that we usesdrictly
controlledvariable of delegate type. From outside the clab#h contains the event, only addition and
removal of methods/delegates are possible. Theiaddind removal can, inside the class, be coetldly
so-calledevent accessoesid andr enove, which in several respect resembée andset of properties. We
will, however, not dwell on these features of C#his material.

The predicate (boolean methaw)\HaveTwoSi xesl nARow in line 35-40 of Program 23.1 in clagis:
determines if the die has shown two sixes in a iidvis is based on the exftiast ory instance variable.

185

Finally, theToss operation may trigger thewSi xesl nARow in line 31-32 of Program 23.1. The event is
triggered in case the history tells that we hawnge/o sixes in a row.

using System
class diceApp {
public static void Main(){
Die d1 = new Die();
d1. twoSi xesl nARow +=

del egate (string nes){
Consol e. Wi t eLi ne(nes);

b
for(int i =1; i < 100; i++){
dl. Toss();
Consol e. WiteLine("{0}: {1}", i, d1. Nunber O Eyes);
}
}
}

Program 23.2 A client of die that reports 'two sixes in a row'
via an event.

In Program 23.3 we show the (abbreviated) outpfrofjram 23.2. The "two sixes in a row" reportiams
out to be reported in between the two sixes. Thiicause the event is triggeredrbys, beforeToss
returns the last 6 value.

Two sixes in a row

Two sixes in a row

Two sixes in a row

Two sixes in a row

Program 23.3 Possible program output of the die applicatior
(abbreviated).

We will now turn to a another example in an enyiidifferent domain, see Program 23.4. This program
constructs a graphical user interface with twodngdtand a textbox, see Figure 23.1. If the usdrgaithe
Click Mebutton, this is reported in the textbox. If thewupushes thErasebutton, the text in the textbox is
deleted.

186

OCO~NOOOUTA~ WN P

Figure 23.1 A graphical user interface with two buttons and xttex.

usi ng System
usi ng System W ndows. For ns;
usi ng System Dr awi ng;

Il

In System

/1 public del egate void EventHandl er (Chject sender, EventArgs e)

public class Wndow Forn{

private Button bl, b2;
private TextBox tb;

/1 Constructor
public W ndow (){

}

t hi

bl

bl.
bl.
bl.
bl.
bl.

tb

tb.
tb.
tb.
tb.
tb.

t hi
t hi
t hi

s. Si ze=new Si ze(150, 200) ;

= new Button();
Text="Cick M";
Si ze=new Si ze(100, 25);
Locati on = new Poi nt (25, 25);
BackCol or = Col or. Yel | ow,
dick += dickHandl er;
/1 Alternatively:
/1 bl.dick+=new Event Handl er (Cl i ckHandl er);
= new Button();

. Text ="Er ase";

. Si ze=new Si ze(100, 25);

. Location = new Poi nt (25, 55);
. BackCol or =Col or. Gr een;
.Qdick += EraseHandl er;

I/ Alternatively:
/1 b2.dick+=new Event Handl er (Er aseHandl er) ;
= new Text Box();
Locati on = new Poi nt (25, 100);
Si ze=new Si ze(100, 25);
BackCol or =Col or. Wi t e;
ReadOnl y=t r ue;
Ri ght ToLef t =Ri ght ToLeft . Yes;

s. Control s. Add(b1l);
s. Control s. Add(b2);
s. Control s. Add(tb);

/1 Event handl er:
private void dickHandl er (object obj, EventArgs ea) {

}

tb.

Text = "You clicked ne";

187

/] Event handl er:
private void EraseHandl er (obj ect obj, EventArgs ea) {
th. Text = ""

}
}

cl ass ButtonTest{

public static void Min(){
W ndow wi n = new W ndow() ;
Appl i cation. Run(w n);

Program 23.4 A Window with two buttons and a textb

The program makes use of the already existing dedagpesyst em Event Handl er . Operations in this
delegate accept amj ect and arevent Ar g parameter, and they return nothing (void).

The constructor of the clagsndow (which inherits fronFor m- a built-in class) dominates the program. In
this constructor the window, aggregated by twodngtand a textbox, is built.

As emphasized in Program 23.4 we add handlerstewbnt®1. d i ck andb2. d i ck. We could have
instantiatecEvent Handl er explicitly, as shown in the comments, but theamobi1. C i ck +=
C i ckHandl er andb2. dick += EraseHandl er is shorter and more elegant.

The two private instance methods ckHandl er andEr aseHandl er serve as event handlers. Notice that
they conform to the signature of theent Handl er . (The signature is characterized by the parantgpess
and the return type).

Exercise 6.5. Additional Die events

In this exercise we add yet another method to tisieg event i classi e, and we add another event to
Di e.

In theDi e event example, we have a public event callei xesl nARow which is triggered if a die shows
two sixes in a row. In the sample client programaald an anonymous method to this event which report
the string parameter of the event on standard tutpu

Add yet another method to theosi xesl nARow event whichcounts the number of times ‘two sixes in a
row' appear. For this purpose we need - quite abyuran integer variable for counting. Where ddou
this variable be located relative to the ‘countimgthod": Will you place the variable inside the new
method, inside thei e class, or inside the client class of the Die?

Add a similar event calledul | House, of the same typeoti fi er, which is triggered if thei e tosses a
full house. A full house means (inspired from thkes of Yahtzee) two tosses of one kind and thossets
of another kind - in a rowFor instance, the toss sequence 5 6 5 6 5 leaafull house. Similarly, the 1 4
4 4 1 leads to a full house. The toss sequencé 6 @ 6 5 does not contain a full house sequemoktiee
toss sequence 6 6 6 6 6 is not a full house.

Be sure to test-drive the program and watch fgg#ring of both events.

188

24. Patterns and Techniques

In this section we will discuss ti@hserver design pattern. We have already introduced the ddielesign
patterns in Chapter 16 and we have studied oneattdrn Singleton, in Section 16.3

24.1. The observer design pattern

Lecture 6 - slide 17

TheObserver is often used to ensurdanse couplindbetween an application and its user
interface

In generalObserver can be used whenever a set of observer objeatistodx informed about
state changes in a subject object

Imagine that aveather service objecbllects information about temperature, rainfatld air pressure.
When the weather conditions change significantiyuaber ofiwveather watcher objectsemperature
watchers, rain watchers, general news watcherssfpegyers and television stations) will have to beatgd.
See Figure 24.1.

_{Raln Watcher Object |

\Weather Service Object F——{Temperature Watcher Object

T it 3 [T b

Figure 24.1 The subject (weather service object) to the leftitmthree
observers (weather watcher objects) to the righe Weather Service Object get
its information various sensors.

The following questions are relevant:

1. Do the weather service object know about the dmtaibeds of the weather watcher objects?
2. How do we associate weather watcher objects wéwiather service object?

In most naive solutions, the weather service olffgutards relevant sensor observations to the weeath
watcher objects. The weather service object semdigidual and customized messages to each weather
watcher object with weather update information whgrelevant for the receiver. Thus, the weatbevise
object knows a lot about the individual needs efulatcher objects. This may work for the first tafoee,
or four watchers, but this approach becomes verglpmatic if there are many watchers: Every tinmew
watcher shows up we must change the weather sebjeet.

Now let us face the second issue. In the naiveisalithe weather service object will often hardenthe

knowledge about watchers in the program. Thisabably OK for one, two or three watchers, but it if
course - tedious in case there are hundreds ohesstc

189

There is a noteworthy a solution to the problentimed above. It is described as a design pattercalse it
addresses a non-trivial solution to a frequentiyunéng problem. The design pattern is knowaserver.
The key ideas are:

1. Watcher objectsubscribeto updates from the service object.
2. The service objediroadcastaotifications about changes to watchers.
3. The watcher object may request details from theiseiobject if they need to.

Below, in Program 24.1 and Program 24.2, we shewgdneral idea/template of tbserver pattern.

usi ng System Col | ecti ons;
namespace Tenpl at es. Cbserver {

public class Subject {
/1 Subject instance vari abl es

private ArraylList observers = new ArraylList();

public void Attach(Qobserver 0){
observers. Add(0);

}

public void Detach(Qbserver 0){
observers. Renove(0);

}

public void Notify(){
foreach(Observer o in observers) o.Update();

}

public SubjectState GetState(){
return new SubjectState();

}
}

public class SubjectState {
/1 Selected state of the subject

}
}

Program 24.1 Template of the Subject cla

The weather service object corresponds to an iostahclassubj ect in Program 24.1 and the watcher
objects correspond to observers, as shown in Rrogda2. In Program 24.3 we illustrate how theer ver
andsubj ect classes can be used in a client program. The gmgyare compilable C# programs, without
any substance, however. In an appendix - Sectidh-58e show the weather service program and how it
uses thébserver pattern.

usi ng System Col | ecti ons;
nanespace Tenpl ates. Cbserver {

public class Observer {
private Subject nySubject;
public Observer (Subject s){
nySubj ect = s;

public void Update(){

190

Il

Subj ect State state = nmySubject. GetState();

I if (the state is interesting){
I react on state change
/11 }
}
}
}

Program 24.2 A templates of the Observer cla

In Program 24.3 we see that two observersgndo2, are attached to the subject object (line 10 djdThe
third observen3s is not yet attache@d1 ando2 hereby subscribe to updates from the subject blijetus
now assume that a mutation of the state in theestibpject triggers a need for updating the observée
following happens:

1. The subject sendsnat i fy message to itself. (In Program 24.3 the cliersuef ect andcbser ver
sends thebt i fy message. This is an artificial and non-typicalagion).

2. Notify updates each of the attached observers, by setidiqgarameterlesspdat e message. This
happens in line 18 of Program 24.1 .

3. Theupdat e method in th@bser ver class asks (if necessary) what really happenétkigubj ect
This is done by sending the messagest at e back to the subject , see line 13 of Program 24.2
Individual observers may request different inforimatfrom thesubj ect . Some observers may not
need to get additional information from the suhjacid these observers will therefore not send a
Get St at e message.

4. et St at e returns the relevant information to the obserVee observer does whatever it finds
necessary to update itself based on its new kngeled

usi ng Tenpl at es. Cbserver;
class Cient {

public static void Min(){
Subj ect subj = new Subject();
Cbserver ol new Observer (subj),
02 new Observer (subj),
03 new Observer (subj);

subj . Attach(ol); // ol subscribes to updates from subj.
subj . Attach(o2); // 02 subscribes to updates from subj.

subj . Notify(); /] Followi ng some state changes in subj
/1 notify observers.

Program 24.3 Application of the Subject and Observei
classes.

You should consult the appendix - Section 58.1yoml web) - for a more realistic scenario in teohthe
weather service and watchers.

191

24.2. Observer with Delegates and Events

Lecture 6 - slide 19

The Observer idea, as described in Section 24. beamplemented conveniently by use of events. We
introduced events in Chapter 23.

According toObserver, the subject has a list of observers which willdhgo notified when the state of the
subject is updated. We can can represent thefligtservers as an event. Recall from Section 2@&Ran
event can contain a number of methods (all of wkltére a common signature described by a delegs} t
Each observer adds a method to the event of thedwdbject. The subject notifies the observers by
triggering the event.

In Program 24.4 we show a template of $bij ect class, corresponding to Program 24.1 in Sectioh. 24
The event is declared in line 9. The delegate bffibe event is shown in line 4. Notice that thbsguiption
methodsAddNot i fi er andRemoveNoti fi er simply adds or subtracts a method to the everanUp
notification - see line 20 in thet i fy method - the subject triggers the event. Fortilhisre purposes - and
in order to stay compatible with the setup in Pang24.4, we pass an instance of the subject stébet
observer, see line 20 of Program 24.4. In this thaye is no need for the observer to ask for @rafrds.

usi ng System Col | ecti ons;
nanespace Tenpl at es. Gbserver {

public del egate void Notification(SubjectState ss);

public class Subject {
/1 Subject instance variable

private event Notification observerNotifier;

public void AddNotifier(Notification n){
observerNotifier += n;

}

public void RenpveNotifier(Notification n){
observerNotifier -= n;

}

public void Notify(){
observerNotifier(new SubjectState());

}
}

public class SubjectState {
/1 Selected state of the subject

}
}

Program 24.4 Template of the Subject cla

usi ng System Col | ecti ons;
nanespace Tenpl at es. Cbserver {

public class Observer {

public Observer (){
1.

}

public void Updat e(SubjectState ss){
/1 if (the state ss is interesting){

192

I react on state change

!

Program 24.5 Template of the Observer cla

In line 10-11 of Program 24.6 we see that the th&eovers1 ando2 add theitupdat e (instance) methods
to the subject. This will add these methods toethent. Theupdat e method of thébserver class is seen in

line 10-14 of Program 24.5.

usi ng Tenpl at es. Cbserver;
class Cient {

public static void Min(){
Subj ect subj = new Subject();

Cbserver ol = new (bserver(),
02 = new Cbserver(),
03 = new Cbserver();

subj . AddNot i fi er (ol. Update);
subj . AddNot i fi er (02. Updat e) ;

subj . Notify();

Program 24.6 Application of the Subject and Observei

classes.

In an appendix - Section 58.2 - we show a versiadheweather center and weather watcher program

programmed with events.

193

194

