
 165

21. Overloaded Operators

In this section we will see how we can use the operators of the C# language on instances of our own classes,
or on values of our own structs.

21.1. Why operator overloading?
Lecture 6 - slide 2

In this section we will describe how to program operations that can be called in expressions that make use of
the conventional operators (such as +, &, >>, and !) of C#. Thus, in a client of a class C, we will provide for
notation such as aC1 + aC2 * aC3 instead of aC1.Plus(aC2.Mult(aC3)) or (with use of class methods)
C.Plus(aC1, C.Mult(aC2,aC3)).

 Use of operators provides for substantial notational convenience in certain classes

When operator notation is natural for objects or values of type C, clients of C can often be programmed with
a more dense and readable notation. The example in Program 21.1 (only on web) provides additional
motivation. The class OperatorsOrNot, (see Program 21.1 on the web) together with a class MyInt (see
Program 21.2 on the web) motivate the use of operators in the context of a complete class.

21.2. Overloadable operators in C#
Lecture 6 - slide 3

We have already once studied the operator table of C#, see Section 6.7. In Table 21.1 below we show a
version of the operator table of C# (with operator priority and associativity) in which we have emphasized all
the operators that can be overloaded in C#.

 166

Level Category Operators Associativity

14 Primary
x.y f(x) a[x] x++ x--
 new typeof checked unchecked default delegate

left to right

13 Unary + - ! ~ ++x --x (T)x true false sizeof left to right

12 Multiplicative * / % left to right

11 Additive + - left to right

10 Shift << >> left to right

9
Relational and
Type testing

< <= > >= is as left to right

8 Equality == != left to right

7
Logical/bitwise
And

& left to right

6
Logical/bitwise
Xor

^ left to right

5
Logical/bitwise
Or

| left to right

4
Conditional
And

&& left to right

3 Conditional Or || left to right

2 Conditional ?: right to left

1 Assignment
= *= /= %= += -
= <<= >>= &= ̂ = |= ?? =>

right to left

Table 21.1 The operator priority table of C#. The operators that can be
overloaded directly are emphasized.

All the gray operators in Table 21.1 cannot be overloaded directly. Many of them can, however, be
overloaded indirectly, or defined by other means. We will now discuss how this can be done.

A notation similar to a[x] (array indexing) can be obtained by use of indexers, see Chapter 19.

The conditional (short circuited) operators && and || can be overloaded indirectly by overloading the
operators & and |. In addition, the operators called true and false must also be provided. true(x) tells if x
counts as boolean true. false(x) tells if x counts as boolean false. (Notice that x belongs to the type - class
or struct - in which we have defined the operators). The operators && and || are defined by the following
equivalences:

• x && y is equivalent to false(x) ? x : (x & y)
• x || y is equivalent to true(x) ? x : (x | y)

Thus, when x && y is encountered we first evaluate the expression false(x). If the value is true, x is
returned. If it is false, y is also evaluated, and the value of x && y becomes x & y. A similar explanation
applies for x || y.

 167

You can define the unary true and false operators in your own classes, and hereby control if the object is
considered to be true or false in some boolean contexts. If you define one of them, you will also have to
define the other. Recall that an expression of the form a ? b : c uses the conditional operator ?: with
the meaning if a then b else c.

All the assignment operators, apart from the basic assignment operator =, are implicitly overloadable. As an
example, the assignment operator *= is implicitly overloaded when we explicitly overload the multiplication
operator *.

The type cast operator (T)x can in reality also be overloaded. In a given class C you can define explicit
and/or implicit conversion operators that converts to and from C. We will see an example of an explicit type
conversion in Program 21.3.

21.3. An example of overloaded operators: Interval
Lecture 6 - slide 4

We will now study the type Interval. This type allows us to represent and operate on intervals of integers.
The Interval type makes a good case for illustration of overloaded operators. We program all interval
operations in a functional style. We want intervals to be non-mutable, and the type is therefore programmed
as a struct.

An interval is characterized by two integer end points from and to. The interval [from - to] denotes the
interval that starts in from and goes to to. The notation [from - to] is an informal notation which we use to
explain the the idea of intervals. In a C# program, the interval [from - to] is denoted by the expression new

Interval(from,to). Notice that from is not necessarily less than to. The following are concrete examples:
[1 - 5] represents the sequence 1, 2, 3, 4, and 5. [5 - 1] represents the sequence 5, 4, 3, 2, and 1. These
two sequences are different.

In Program 21.3 we see the struct Interval. The private instance variables from and to represent the
interval in a simple and straightforward way, and the constructor is also simple. Just after the constructor
there are two properties, From and To, that access the end points of the interval. In this version of the type it
is not possible to construct an empty interval. We have already dealt with this weakness in Section 16.4 (see
Program 16.7 versus Program 16.8) in the context of factory methods.

After the two properties we have highlighted a number of overloaded operators. These are our main interest
in this section. Notice the syntax for definition of the operators. There are two definitions of the + operator.
One of the form anInterval + i and one of the form i + anInterval. Both have the same meaning,
namely addition of i to both end-points. Thus [1 - 5] + 3 and 3 + [1 - 5] are both equal to the interval
[4 - 8].

In similar ways we define multiplication of intervals and integers. We also define subtraction of an integer
from an interval (but not the other way around). The shift operators << and >> provide nice notations for
moving one of the end-points of an interval. Thus, [1 - 5] >> 3 is equal to the interval [1 - 8].

Finally, the unary prefix operator ! reverses an interval (internally, by making an interval with swapped end-
points). Thus, ![1 - 5] is equal to the interval [5 - 1].

The private class IntervalEnumerator (shown only in the web version) and the method GetEnumerator
make it possible to traverse an interval in a convenient way with use of foreach. Interval traversal is what

 168

makes intervals useful. This is illustrated in Program 21.4. We will, in great details, discuss
IntervalEnumerator later in this material, see Section 31.6 - in particular Program 31.9.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

using System;
using System.Collections;

public struct Interval{

 private readonly int from, to;

 public Interval(int from, int to){
 this.from = from;
 this.to = to;
 }

 public int From{
 get {return from;}
 }

 public int To{
 get {return to;}
 }

 public int Length{
 get {return Math.Abs(to - from) + 1;}
 }

 public static Interval operator +(Interval i, int j){
 return new Interval(i.From + j, i.To + j);
 }

 public static Interval operator +(int j, Interval i){
 return new Interval(i.From + j, i.To + j);
 }

 public static Interval operator >>(Interval i, int j){
 return new Interval(i.From, i.To + j);
 }

 public static Interval operator <<(Interval i, int j){
 return new Interval(i.From + j, i.To);
 }

 public static Interval operator *(Interval i, int j){
 return new Interval(i.From * j, i.To * j);
 }

 public static Interval operator *(int j, Interval i){
 return new Interval(i.From * j, i.To * j);
 }

 public static Interval operator -(Interval i, int j){
 return new Interval(i.From - j, i.To - j);
 }

 public static Interval operator !(Interval i){
 return new Interval(i.To, i.From);
 }

 public static explicit operator int[] (Interval i){
 int[] res = new int[i.Length];
 for (int j = 0; j < i.Length; j++) res[j] = i[j];
 return res;
 }

 169

62
63
64
65
66
67
68
69
70
71

 private class IntervalEnumerator: IEnumerator{
 // Details not shown in this version
 }

 public IEnumerator GetEnumerator (){
 return new IntervalEnumerator(this);
 }

}

 Program 21.3 The struct Interval.

Take a look at Program 21.4 in which we use intervals. Based on the constructed intervals iv1 and iv2 we
write expressions that involve intervals. These are all highlighted in Program 21.4. Let me explain the
expression !(3 + !iv2 * 2). When we evaluate this expression we adhere to normal precedence rules and
normal association rules of the operators. We cannot change these rules. Therefore, we first evaluate !iv2,
which is [5 - 2]. Next we evaluate !iv2 * 2, which is [10 - 4]. To this interval we add 3. This gives the
interval [13 - 7]. Finally we reverse this interval. The final value is [7 - 13].

Also emphasized in Program 21.3 we show iv3[0] and iv3[iv3.Length-1]. These expressions use interval
indexers. In Exercise 6.1 it is an exercise to program this indexer.Emphasized with blue in Program 21.3 and
Program 21.4 we show how to program and use an explicit type cast from Interval to int[].You should
follow the evaluations of all highlighted expressions in Program 21.4 and compare your results with the
program output in Listing 21.5.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

using System;

public class app {

 public static void Main(){

 Interval iv1 = new Interval(17,14),
 iv2 = new Interval(2,5),
 iv3;

 foreach(int k in !(3 + iv1 - 2)){
 Console.Write("{0,4}", k);
 }
 Console.WriteLine();

 foreach(int k in !(3 + !iv2 * 2)){
 Console.Write("{0,4}", k);
 }
 Console.WriteLine();

 iv3 = !(3 + !iv2 * 3) >> 2 ;
 Console.WriteLine("First and last in iv3: {0}, {1}",
 iv3[0], iv3[iv3.Length-1]);

 int[] arr = (int[])iv3;
 foreach(int j in arr){
 Console.Write("{0,4}", j);
 }

 }

}

 Program 21.4 A client program of struct Interval.

 170

1
2
3
4

 15 16 17 18
 7 8 9 10 11 12 13
First and last in iv3: 9, 20
 9 10 11 12 13 14 15 16 17 18 19 20

 Listing 21.5 Output from the interval application.

In Program 21.6 we show yet another example of programming overloaded operators. We overload ==, !=, <,
and >. This example brings us back to the playing card class which we have discussed already in Program
12.7 of Section 12.6 and Program 14.3 of Section 14.3.

Emphasized with colors in Program 21.6 we show operators that compare two cards. Notice, as above, that
the operator definitions always are static. Also notice that if we define == we also have to define != . The ==
operator is defined via the Equals methods, which is redefined in class Card such that it provides value
comparison of Card instances. If we redefine Equals we must also redefine GetHashCode. All together, a lot
of work! Similarly, if we define <= we have also have to define >= .

Please notice that our redefinition of Equals in Program 21.6 is too simple for a real-life program. In Section
28.16 we will see the general pattern for redefinition of the Equals instance method.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

using System;

public enum CardSuite { Spades, Hearts, Clubs, Diamonds };
public enum CardValue { Ace = 1, Two = 2, Three = 3, Four = 4, Five = 5,
 Six = 6, Seven = 7, Eight = 8, Nine = 9, Ten = 10,
 Jack = 11, Queen = 12, King = 13};

public class Card{

 private CardSuite suite;
 private CardValue value;

 // Some methods are not shown in this version

 public override bool Equals(Object other){
 return (this.suite == ((Card)other).suite) &&
 (this.value == ((Card)other).value);
 }

 public override int GetHashCode(){
 return (int)suite ^ (int)value;
 }

 public static bool operator ==(Card c1, Card c2){
 return c1.Equals(c2);
 }

 public static bool operator !=(Card c1, Card c2){
 return !(c1.Equals(c2));
 }

 public static bool operator <(Card c1, Card c2){
 bool res;
 if (c1.suite < c2.suite)
 res = true;
 else if (c1.suite == c2.suite)
 res = (c1.value < c2.value);
 else res = false;
 return res;

 171

41
42
43
44
45
46

 }

 public static bool operator >(Card c1, Card c2){
 return !(c1 < c2) && !(c1 == c2);
 }
}

 Program 21.6 The class PlayingCard with relational
operators.

The details left out in line 14 of Program 21.6 can be seen in the web-version of the paper.

 Exercise 6.1. Interval indexer

It is recommended that you use the web edition of the material when you solve this exercise. The web
edition has direct links to the class source files, which you should use as the starting point.

The Interval type represents an oriented interval [from - to] of integers. We use the Interval example
to illustrate the overloading of operators. If you have not already done so, read about the idea behind the
struct Interval in the course teaching material.

In the client of struct Interval we use an indexer to access elements of the interval. For some interval i,
the expression i[0] should access the from-value of i, and i[i.Length-1] should access the to-value of
i.

Where, precisely, is the indexer used in the given client class?

Add the indexer to the struct Interval (getter only) which accesses element number j (0 <= j <=
i.Length) of an interval i.

Hint: Be careful to take the orientation of the interval into account.

Does it make sense to program a setter of this indexer?

 Exercise 6.2. An interval overlap operation

It is recommended that you use the web edition of the material when you solve this exercise. The web
edition has direct links to the class source files, which you should use as the starting point.

In this exercise we continue our work on struct Interval, which we have used to illustrate overloaded
operators in C#.

Add an Interal operation that finds the overlap between two intervals. Your starting point should be the
struct Interval. In the version of struct Interval, provided as starting point for this exercise, intervals may
be empty.

Please analyze the possible overlappings between two intervals. There are several cases that need
consideration. The fact that Interval is oriented may turn out to be a complicating factor in the solution.
Feel free to ignore the orientation of intervals in your solution to this exercise.

Which kind of operation will you chose for the overlapping operation in C# (method, property, indexer,

 172

operator)?

Before you program the operation in C# you should design the signature of the operation.

Program the operation in C#, and test your solution in an Interval client program. You may chose to
revise the Interval client program from the teaching material.

21.4. Some details of operator overloading
Lecture 6 - slide 5

Below we summarize the syntax of operator definition, which overloads a predefined operators symbol.

public static return-type operator symbol(formal-par-list){
 body-of-operator
}

 Syntax 21.1 The C# syntax for definition of an overloaded
operator.

There are many detailed rules that must be observed when we overload the predefined operator symbols.
Some of them were mentioned in Section 21.3. Others are brought up below.

 • Operators must be public and static
• One or two formal parameters must occur, corresponding to unary and binary operators
• At least one of the parameters must be of the type to which the operator belongs
• Only value parameters apply
• Some operators must be defined in pairs (either none or both):

• == and != < and > <= and >=
• The special unary boolean operators true and false define when an object is playing the role as

true or false in relation to the conditional logical operators
• Overloading the binary operator op causes automatic overloading of the assignment operator op=

This concludes our coverage of operator overloading. Notice that we have not discussed all details of this
subject. You should consult a C# reference manual for full coverage.

 173

22. Delegates

In this chapter we will discuss the concept of delegates. Seen in relation to similar, previous object-oriented
programming languages (such as Java and C++) this is a new topic. The inspiration comes from functional
programming where functions are first class values. If x is a first class value x can be passed as parameter, x
can be returned from functions, and x can be part of data structures. With the introduction of delegates,
methods become first class values in C#. We will explore this "exciting world be new opportunities" in the
next few sections.

22.1. Delegates in C#
Lecture 6 - slide 7

The idea of a delegate in a nutshell is as follows:

 A delegate is a type the values of which consist of methods

Delegates allow us to work with variables and parameters that contain methods

Thus, a delegate in C# defines a type, in the same way as a class defines a type. A delegate reflects the
signature of a set of methods, not including the method names, however. A delegate is a reference type in C#.
It means that values of a delegate type are accessed via references, in the same way as an object of a class
always is accessed via a reference. In particular, null is a possible delegate value.

In Program 22.1 NummericFunction is the name of a new type. This is the type of functions that accept a
double and returns a double. The static method PrintTableOfFunction takes a NummericFunction f as
first parameter. PrintTableOfFunction prints a table of f values within a given range [from,to] and with a
given granularity, step. In the Main method we show a number of activations of PrintTableOfFunction.
The first three activations generate tables of the well-known functions log, sinus, and abs. Notice that these
functions belong to the NummericFunction delegate, because they are all are functions from double to
double. The last activation generates a table of the method Cubic, as we have defined it in Program 22.1. It
is again crucial that Cubic is a function from double to double. If Cubic had another signature, such as int

-> int or double x double -> double, it would not fit with the NumericFunction delegate.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

using System;

public class Application {

 public delegate double NumericFunction(double d);

 public static void PrintTableOfFunction(NumericFunction f,
 string fname,
 double from, double to,
 double step){
 double d;

 for(d = from; d <= to; d += step){
 Console.WriteLine("{0,10}({1,-4:F3}) = {2}", fname, d, f(d));
 }

 Console.WriteLine();
 }

 174

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

 public static double Cubic(double d){
 return d*d*d;
 }

 public static void Main(){
 PrintTableOfFunction(Math.Log, "log", 0.1, 5, 0.1);
 PrintTableOfFunction(Math.Sin, "sin", 0.0, 2 * Math.PI, 0.1);
 PrintTableOfFunction(Math.Abs, "abs", -1.0, 1.0, 0.1);

 PrintTableOfFunction(Cubic, "cubic", 1.0, 5.0, 0.5);

 // Equivalent to previous:
 PrintTableOfFunction(delegate (double d){return d*d*d;},
 "cubic", 1.0, 5.0, 0.5);
 }
}

 Program 22.1 A Delegate of simple numeric functions.

In line 31 of Program 22.1 notice the anonymous function

 delegate (double d){return d*d*d;}

The function has no name - it is anonymous. The function is equivalent with the method Cubic in line 20-22,
apart from the fact that it has no name. It is noteworthy that we on the fly are able to write an expression the
value of which is a method that belongs to the delegate type NumericFunction. In C#3.0 the notation for
anonymous functions has been streamlined to that of lambda expressions. We will touch on this topic in
Section 22.4. We outline the output of Program 22.1 in Listing 22.2 (only on web). We do not show all the
output lines, however.

Things get even more interesting in Program 22.3. The function to watch is Compose. It accepts, as input
parameters two numeric functions f and g, and it returns (another) numeric function. The idea is to return the
function f o g. This is the function that returns f(g(x)) when it is given x as input.

Notice the expression Compose(Cubic, Minus3) in Main. This is a function that we pass as input to the
PrintTableOfFunction, which we already have discussed. In order to examine the function Compose(Cubic,
Minus3) we watch the program output in Listing 22.4. Please verify for yourself that Compose(Cubic,
Minus3) is the function which subtracts 3 from its input, and thereafter calculates the cubic function on that
(reduced) number.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

using System;

public class Application {

 public delegate double NumericFunction(double d);

 public static NumericFunction Compose
 (NumericFunction f, NumericFunction g){
 return delegate(double d){return f(g(d));};
 }

 public static void PrintTableOfFunction
 (NumericFunction f, string fname,
 double from, double to, double step){
 double d;

 for(d = from; d <= to; d += step){

 175

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

 Console.WriteLine("{0,35}({1,-4:F3}) = {2}", fname, d, f(d));
 }

 Console.WriteLine();
 }

 public static double Square(double d){
 return d*d;
 }

 public static double Cubic(double d){
 return d*d*d;
 }

 public static double Minus3(double d){
 return d-3;
 }

 public static void Main(){
 PrintTableOfFunction(Compose(Cubic, Minus3),
 "Cubic of Minus3", 0.0, 5.0, 1.0);

 PrintTableOfFunction(
 Compose(Square, delegate(double d){
 return d > 2 ? -d : 0;}),
 "Square of if d>2 then -d else 0", 0.0, 5.0, 1.0);
 }
}

 Program 22.3 The static method Compose in class
Application.

1
2
3
4
5
6
7
8
9
10
11
12
13

 Cubic of Minus3(0,000) = -27
 Cubic of Minus3(1,000) = -8
 Cubic of Minus3(2,000) = -1
 Cubic of Minus3(3,000) = 0
 Cubic of Minus3(4,000) = 1
 Cubic of Minus3(5,000) = 8

 Square of if d>2 then -d else 0(0,000) = 0
 Square of if d>2 then -d else 0(1,000) = 0
 Square of if d>2 then -d else 0(2,000) = 0
 Square of if d>2 then -d else 0(3,000) = 9
 Square of if d>2 then -d else 0(4,000) = 16
 Square of if d>2 then -d else 0(5,000) = 25

 Listing 22.4 Output from the Compose delegate
program.

What we have shown above gives you the flavor of functional programming. In functional programming we
often generate new functions based on existing functions, like we did with use of Compose.

 Delegates make it possible to approach the functional programming style

Methods can be passed as parameters to, and returned as results from other methods

 Exercise 6.3. Finding and sorting elements in an array

In this exercise we will work with searching and sorting in arrays. To be concrete, we work on an array of
type Point, where Point is the type we have been programming in earlier exercises.

 176

Via this exercise you are supposed to learn how to pass a delegate to a method such as Find and Sort. The
purpose of passing a delegate to Find is to specify which point we are looking for.

Make an array of Point objects. You can, for instance, use this version of class Point. You can also use a
version that you wrote as solution to one of the previous exercises.

Use the static method System.Array.Find to locate the first point in the array that satisfies the condition:

The sum of the x and y coordinates is (very close to) zero

The solution involves the programming of an appropriate delegate in C#. The delegate must be a Point
predicate: a method that takes a Point as parameter and returns a boolean value.

Next, in this exercise, sort the list of points by use of one of the static Sort methods in System.Array.
Take a look at the Sort methods in System.Array. There is an overwhelming amount of these! We will
use the one that takes a Comparison delegate, Comparison<T>, as the second parameter. Please find this
method in your documentation browser. Why do we need to pass a Comparison predicate to the Sort
method?

Comparison<Point> is a delegate that compares two points, say p1 and p2. Pass an actual delegate
parameter to Sort in which

 p1 <= p2 if and only if p1.X + p1.Y <= p2.X + p2.Y

Please notice that a comparsion between p1 and p2 must return an integer. A negative integer means that
p1 is less than p2. Zero means that p1 is equal to p2. A positive integer means that p1 is greater than p2.

Test run you program. Is your Point array sorted in the way you excepts?

 Exercise 6.4. How local are local variables and formal parameters?

When we run the following program

 using System;
public class Application {

 public delegate double NumericFunction(double d);
 static double factor = 4.0;

 public static NumericFunction MakeMultiplier(double factor){
 return delegate(double input){return input * factor;};
 }

 public static void Main(){
 NumericFunction f = MakeMultiplier(3.0);
 double input = 5.0;

 Console.WriteLine("factor = {0}", factor);
 Console.WriteLine("input = {0}", input);
 Console.WriteLine("f is a generated function which multiplies its input with
factor");
 Console.WriteLine("f(input) = input * factor = {0}", f(input));
 }
}

 177

we get this output

 factor = 4
input = 5
f is a generated function which multiplies its input with factor
f(input) = input * factor = 15

Explain!

22.2. Delegates that contain instance methods
Lecture 6 - slide 8

The delegates in Section 22.1 contained static methods. Static methods are activated without a receiving
object. When we put an instance method m into a delegate object, we need to find a way to provide the
receiver object of m. We can, in principle, provide this object as part of the activation of the delegate, or we
can aggregate it together with the method itself. In C# the latter solution has been chosen.

In Section 22.1 we show a relatively trivial class Messenger. A messenger object stores a message of type
Message. Message is a delegate, shown in purple. The DoSend method calls the method in the delegate.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

using System;

public delegate void Message(string txt);

public class Messenger{

 private string sender;
 private Message message;

 public Messenger(string sender){
 this.sender = sender;
 message = null;
 }

 public Messenger(string sender, Message aMessage){
 this.sender = sender;
 message = aMessage;
 }

 public void DoSend(){
 message("Message from " + sender);
 }
}

 Program 22.5 A Messenger class and a Message
delegate.

The class A is even more trivial. It just holds some state and an instance method called MethodA.

1
2
3
4
5

using System;

public class A{

 private int state;

 178

6
7
8
9
10
11
12
13
14

 public A(int i){
 state = i;
 }

 public void MethodA(string s){
 Console.WriteLine("A: {0}, {1}", state, s);
 }
}

 Program 22.6 A very simple class A with an instance method
MethodA.

In the class Application we create some instances of class A. The class Application is shown in Program
22.7. For now we only use one of the instances of A. We pass a2.MethodA to the Message (delegate)
parameter of the Messenger constructor. With this we package both the object referred to by a2 and the
method MethodA together, and it now forms part of the state of the new Message object. When the message
object receives the DoSend message it activates its delegate. From the output in Listing 22.8 we see that it is
in fact the instance method AMethod in the object a2 (with state equal to 2), which is called via the delegate.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

using System;

public class Application{

 public static void Main(){
 A a1 = new A(1),
 a2 = new A(2),
 a3 = new A(3);

 Messenger m = new Messenger("CS at AAU", a2.MethodA);

 m.DoSend();
 }

}

 Program 22.7 An Application class which accesses an instance
method in class A.

1 A: 2, Message from CS at AAU

 Listing 22.8 Output from Main of class Application.

So now we have seen that a delegate may contain an object, which consists of a receiver together with a
method to be activated on the receiver.

In Section 22.3 below we will see that this is not the whole story. A delegate may in fact contain a list of
such receiver/method pairs.

22.3. Multivalued delegates
Lecture 6 - slide 9

The class Messenger in Program 22.9 is an extension of class Messenger in Program 22.5. The body of the
method InstallMessage shows that it is possible to add a method to a delegate. Behind the scene, a delegate
is a list of methods (and, if necessary, receiver objects). The + operator has been overloaded to work on

 179

delegates. It adds a method to a delegate. Similarly, the - operator has been overloaded to remove a method
from a delegate.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

using System;

public delegate void Message(string txt);

public class Messenger{

 private string sender;
 private Message message;

 public Messenger(string sender){
 this.sender = sender;
 message = null;
 }

 public Messenger(string sender, Message aMessage){
 this.sender = sender;
 message = aMessage;
 }

 public void InstallMessage(Message mes){
 this.message += mes;
 }

 public void UnInstallMessage(Message mes){
 this.message -= mes;
 }

 public void DoSend(){
 message("Message from " + sender);
 }
}

 Program 22.9 Install and UnInstall message methods in the
Messenger class.

The class A, which is used in Program 22.10, can be seen in Program 22.6.

In the class Application in Program 22.10 instantiates a number of A objects and a single Messenger object.
The idea is to add and remove instance methods to the Messenger object, and to activate the methods in the
Messenger object via the DoSend method in line 28-31 of Program 22.9.

In line 11 of Program 22.10 we install a1.MethodA in m, which already (from the Messenger construction)
contains a2.AMethod. In the program output in Listing 22.11 this is revealed in the first two output lines.

Next we install a3.AMethod twice in m. At this point in time the delegate in m contains four methods. This is
seen in the middle section of Listing 22.11.

Finally, we uninstall a3.AMethod and a1.Amethod, leaving two methods in the delegate. This is shown in the
last section of output in Listing 22.11.

 180

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

using System;

public class Application{

 public static void Main(){
 A a1 = new A(1),
 a2 = new A(2),
 a3 = new A(3);

 Messenger m = new Messenger("CS at AAU", a2.MethodA);
 m.InstallMessage(a1.MethodA);
 m.DoSend();
 Console.WriteLine();

 m.InstallMessage(a3.MethodA);
 m.InstallMessage(a3.MethodA);
 m.DoSend();
 Console.WriteLine();

 m.UnInstallMessage(a3.MethodA);
 m.UnInstallMessage(a1.MethodA);
 m.DoSend();
 }
}

 Program 22.10 An Application class.
1
2
3
4
5
6
7
8
9
10

A: 2, Message from CS at AAU
A: 1, Message from CS at AAU

A: 2, Message from CS at AAU
A: 1, Message from CS at AAU
A: 3, Message from CS at AAU
A: 3, Message from CS at AAU

A: 2, Message from CS at AAU
A: 3, Message from CS at AAU

 Listing 22.11 Output from Main of class Application.

22.4. Lambda Expressions
Lecture 6 - slide 10

A lambda expression is a value in a delegate type. Delegates were introduced in Section 22.1. The notation
of lambda expression adds some extra convenience to the notation of delegates. Instead of the syntax
delegate(formal-parameters){body} lambda expressions use the syntax formal-parameters => body. => is an
operator in the language, see Section 6.7. It is not necessary to give the types of the formal parameters in a
lambda expression. In addition, the body of a lambda expression may be an expression. In a delegate, the
body must be a statement block (a command).

By the way, why is it called lambda expressions? Lambda λ is a Greek letter, like alpha α and beta α. The
notion of lambda expressions come from a branch of mathematics called lambda calculus. In lambda
calculus lambda expressions, such as λx. x+1, is used as a notation for functions. The particular function λx.
x+1 adds one to its argument x. Lambda expression were brought into early functional programming
language, most notably Lisp. Since then, "lambda expression" has been the name of those expressions which
evaluate to function values.

 181

In Program 22.12 below we make list of five equivalent functions. The first one - line 12 - uses C# delegate
notation, as already introduced in Section 22.1. The last one - line 16 - is a lambda expression written as
concise as possible. The three in between - line 13, 14, and 15 - illustrate the notational transition from
delegate notation to lambda notation.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

using System;
using System.Collections.Generic;

class Program{

 public delegate double NumericFunction(double d);

 public static void Main(){

 NumericFunction[] equivalentFunctions =
 new NumericFunction[]{
 delegate (double d){return d*d*d;},
 (double d) => {return d*d*d;},
 (double d) => d*d*d,
 (d) => d*d*d,
 d => d*d*d
 };

 foreach(NumericFunction nf in equivalentFunctions)
 Console.WriteLine("NumericFunction({0}) = {1}", 5, nf(5));
 }

}

 Program 22.12 Five equivalent functions - from anonymous
method expressions to lambda expressions.

In Program 22.12 notice that we are able to organize five functions in a data structure, here an array. I line
19-12 we traverse the list of functions in a foreach control structure. Each function is bound to the local
name nf, and nf(5) calls a given function on the number 5.

In Listing 22.13 (only on web) we show the output of Listing 22.13. As expected, all five calls nf(5) return
the number 125.

The items below summarize lambda expressions in relation to delegates in C#:

 • The body can be a statement block or an expression
• Uses the operator => which has low priority and is right associative
• May involve implicit inference of parameter types
• Lambda expressions serve as syntactic sugar for a delegate expression

 182

 183

23. Events
The event concept is central in event-driven programming. Programs with graphical user interfaces are
event-driven. With the purpose of discussing events we will see a simple example of a graphical user
interface at the end of this chapter.

23.1. Events
Lecture 6 - slide 12

 In a program, an event contains some actions that must be carried out when the event is triggered

In command-driven programming, the computer prompts the user for input. When the user is prompted the
program stops and waits a given program location. When a command is issued by the user, the program is
continued at the mentioned location. The program will analyze the command and carry out an appropriate
action.

In event-driven programming the program reacts on what happens on the elements of the user interface, or
more generally, what happens on some selected state of the program. When a given event is triggered the
actions that are associated with this particular event are carried out.

 Inversion of control

Don't call us - we call you

The "Don't call us - we call you" idea is due to the observation that the operations called by the event
mechanism is not activated explicitly by our own program. The operations triggered by events are called by
the system, such as the graphical user interface framework. This is sometimes referred to as inversion of
control.

Below, we compare operations (such as methods) and events.

 • Event
• Belongs to a class
• Contains one or more operations, which are called when the event is triggered.
• The operations in the event are called implicitly

• Operation
• Belongs to a class
• Is called explicitly - directly or indirectly - by other operations

In the following sections we will describe the event mechanism in C#. Fortunately, we have already made
the preparations for this in Chapter 22, because an event can be modelled as a variable of a delegate type.

 184

23.2. Events in C#
Lecture 6 - slide 13

In C# an event in some class C is a variable of a delegate type in C. Like classes, delegates are reference
types. This implies that an event holds a reference to an instance of a delegate. The delegate is allocated on
the heap.

 From inside some class, an event is a variable of a delegate type.

From outside a class, it is only possible to add to or remove from an event.

Events are intended to provide notifications, typically in relation to graphical user interfaces.

The following restrictions apply to events, compared to variables of delegate types:

 • An event can only be activated from within the class to which the event belongs
• From outside the class it is only possible to add (with +=) or subtract (with -=) operations to an

event.
• It is not possible to 'reset' the event with an ordinary assignment

In the System namespace there exists a generic delegate called EventHandler<TEVentArgs>, which is
recommended for event handling in the .NET framework. Thus, instead of programming your own delegate
types of your events, it is recommended to use a delegate constructed from EventHandler<TEVentArgs>.
The EventHandler delegate takes two arguments: The object which generated the event and an object which
describes the event as such. The latter is assumed to be a subclass of the pre-existing class EventArgs. For
more information about EventHandler<TEVentArgs> consult the documentation of the generic
EventHandler delegate. For details on generic delegates (type parameterized delegates) see Section 43.2.

23.3. Examples of events
Lecture 6 - slide 14

In this section we will see examples of programs that make use of events.

First, in Program 23.1 we elaborate the Die class, which we have met several times before, see Section 10.1 ,
Section 12.5 , and Section 16.3.

In Program 23.1 the Toss operation of the Die class triggers a particular event in case it tosses two sixes in a
row, see line 30-31.

1
2
3
4
5
6
7
8
9

using System;
using System.Collections.Generic;

public delegate void Notifier(string message);

public class Die {

 private int numberOfEyes;
 private Random randomNumberSupplier;

 185

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

 private int maxNumberOfEyes;
 private List<int> history;
 public event Notifier twoSixesInARow;

 public int NumberOfEyes{
 get {return numberOfEyes;}
 }

 public Die (): this(6){}

 public Die (int maxNumberOfEyes){
 randomNumberSupplier = new Random(unchecked((int)DateTime.Now.Ticks));
 this.maxNumberOfEyes = maxNumberOfEyes;
 numberOfEyes = randomNumberSupplier.Next(1, maxNumberOfEyes + 1);
 history = new List<int>();
 history.Add(numberOfEyes);
 }

 public void Toss (){
 numberOfEyes = randomNumberSupplier.Next(1,maxNumberOfEyes + 1);
 history.Add(numberOfEyes);
 if (DoWeHaveTwoSixesInARow(history))
 twoSixesInARow("Two sixes in a row");
 }

 private bool DoWeHaveTwoSixesInARow(List<int> history){
 int histLength = history.Count;
 return histLength >= 2 &&
 history[histLength-1] == 6 &&
 history[histLength-2] == 6;
 }

 public override String ToString(){
 return String.Format("Die[{0}]: {1}", maxNumberOfEyes, NumberOfEyes);
 }
}

 Program 23.1 The die class with history and dieNotifier.

In Program 23.1 Notifier is a delegate. Thus, Notifier is a type.

twoSixesInARow is an event - analogous to an instance variable - of type Notifier. Alternatively, we could
have used the predefined EventHandler delegate (see Section 23.2) instead of Notifier. The event
twoSixesInARow is public, and therefore we can add operations to this event from clients of Die objects. In
line 9-11 of the class diceApp, shown in Program 23.2, we add an anonymous delegate to
d1.twoSixesInARow, which reports the two sixes on the console.

Notice the keyword "event", used in declaration of variables of delegate types for event purposes. It is
tempting to think of "event" as a modifier, which gives a slightly special semantics to a Notifier delegate.
Technically in C#, however, event is not a modifier. The keyword event signals that we use a strictly
controlled variable of delegate type. From outside the class, which contains the event, only addition and
removal of methods/delegates are possible. The addition and removal can, inside the class, be controlled by
so-called event accessors add and remove, which in several respect resemble get and set of properties. We
will, however, not dwell on these features of C# in this material.

The predicate (boolean method) DoWeHaveTwoSixesInARow in line 35-40 of Program 23.1 in class Die
determines if the die has shown two sixes in a row. This is based on the extra history instance variable.

 186

Finally, the Toss operation may trigger the twoSixesInARow in line 31-32 of Program 23.1. The event is
triggered in case the history tells that we have seen two sixes in a row.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

using System;

class diceApp {

 public static void Main(){

 Die d1 = new Die();

 d1.twoSixesInARow +=
 delegate (string mes){
 Console.WriteLine(mes);
 };

 for(int i = 1; i < 100; i++){
 d1.Toss();
 Console.WriteLine("{0}: {1}", i, d1.NumberOfEyes);
 }

 }
}

 Program 23.2 A client of die that reports 'two sixes in a row'
via an event.

In Program 23.3 we show the (abbreviated) output of Program 23.2. The "two sixes in a row" reporting turns
out to be reported in between the two sixes. This is because the event is triggered by Toss, before Toss
returns the last 6 value.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

1: 6
2: 4
...
32: 3
33: 6
Two sixes in a row
34: 6
Two sixes in a row
35: 6
...
66: 2
67: 6
Two sixes in a row
68: 6
69: 2
70: 4
...
97: 6
Two sixes in a row
98: 6
99: 3

 Program 23.3 Possible program output of the die application
(abbreviated).

We will now turn to a another example in an entirely different domain, see Program 23.4. This program
constructs a graphical user interface with two buttons and a textbox, see Figure 23.1. If the user pushes the
Click Me button, this is reported in the textbox. If the user pushes the Erase button, the text in the textbox is
deleted.

 187

Figure 23.1 A graphical user interface with two buttons and a textbox.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

using System;
using System.Windows.Forms;
using System.Drawing;

// In System:
// public delegate void EventHandler (Object sender, EventArgs e)

public class Window: Form{

 private Button b1, b2;
 private TextBox tb;

 // Constructor
 public Window (){
 this.Size=new Size(150,200);

 b1 = new Button();
 b1.Text="Click Me";
 b1.Size=new Size(100,25);
 b1.Location = new Point(25,25);
 b1.BackColor = Color.Yellow;
 b1.Click += ClickHandler;
 // Alternatively:
 // b1.Click+=new EventHandler(ClickHandler);
 b2 = new Button();
 b2.Text="Erase";
 b2.Size=new Size(100,25);
 b2.Location = new Point(25,55);
 b2.BackColor=Color.Green;
 b2.Click += EraseHandler;
 // Alternatively:
 // b2.Click+=new EventHandler(EraseHandler);
 tb = new TextBox();
 tb.Location = new Point(25,100);
 tb.Size=new Size(100,25);
 tb.BackColor=Color.White;
 tb.ReadOnly=true;
 tb.RightToLeft=RightToLeft.Yes;

 this.Controls.Add(b1);
 this.Controls.Add(b2);
 this.Controls.Add(tb);
 }

 // Event handler:
 private void ClickHandler(object obj, EventArgs ea) {
 tb.Text = "You clicked me";
 }

 188

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

 // Event handler:
 private void EraseHandler(object obj, EventArgs ea) {
 tb.Text = "";
 }

}

class ButtonTest{

 public static void Main(){
 Window win = new Window();
 Application.Run(win);
 }

}

 Program 23.4 A Window with two buttons and a textbox.

The program makes use of the already existing delegate type System.EventHandler. Operations in this
delegate accept an Object and an EventArg parameter, and they return nothing (void).

The constructor of the class Window (which inherits from Form - a built-in class) dominates the program. In
this constructor the window, aggregated by two buttons and a textbox, is built.

As emphasized in Program 23.4 we add handlers to the events b1.Click and b2.Click. We could have
instantiated EventHandler explicitly, as shown in the comments, but the notion b1.Click +=
ClickHandler and b2.Click += EraseHandler is shorter and more elegant.

The two private instance methods ClickHandler and EraseHandler serve as event handlers. Notice that
they conform to the signature of the EventHandler. (The signature is characterized by the parameter types
and the return type).

 Exercise 6.5. Additional Die events

In this exercise we add yet another method to the existing event i class Die, and we add another event to
Die.

In the Die event example, we have a public event called twoSixesInARow which is triggered if a die shows
two sixes in a row. In the sample client program we add an anonymous method to this event which reports
the string parameter of the event on standard output.

Add yet another method to the twoSixesInARow event which counts the number of times 'two sixes in a
row' appear. For this purpose we need - quite naturally - an integer variable for counting. Where should
this variable be located relative to the 'counting method': Will you place the variable inside the new
method, inside the Die class, or inside the client class of the Die?

Add a similar event called fullHouse, of the same type Notifier, which is triggered if the Die tosses a
full house. A full house means (inspired from the rules of Yahtzee) two tosses of one kind and three tosses
of another kind - in a row. For instance, the toss sequence 5 6 5 6 5 leads to a full house. Similarly, the 1 4
4 4 1 leads to a full house. The toss sequence 5 1 6 6 6 6 5 does not contain a full house sequence, and the
toss sequence 6 6 6 6 6 is not a full house.

Be sure to test-drive the program and watch for triggering of both events.

 189

24. Patterns and Techniques

In this section we will discuss the Observer design pattern. We have already introduced the idea of design
patterns in Chapter 16 and we have studied one such pattern, Singleton, in Section 16.3

24.1. The observer design pattern
Lecture 6 - slide 17

 The Observer is often used to ensure a loose coupling between an application and its user
interface

In general, Observer can be used whenever a set of observer objects need to be informed about
state changes in a subject object

Imagine that a weather service object collects information about temperature, rainfall, and air pressure.
When the weather conditions change significantly, a number of weather watcher objects - temperature
watchers, rain watchers, general news watchers (newspapers and television stations) will have to be updated.
See Figure 24.1.

Figure 24.1 The subject (weather service object) to the left and its three
observers (weather watcher objects) to the right. The Weather Service Object get
its information various sensors.

The following questions are relevant:

1. Do the weather service object know about the detailed needs of the weather watcher objects?
2. How do we associate weather watcher objects with the weather service object?

In most naive solutions, the weather service object forwards relevant sensor observations to the weather
watcher objects. The weather service object sends individual and customized messages to each weather
watcher object with weather update information which is relevant for the receiver. Thus, the weather service
object knows a lot about the individual needs of the watcher objects. This may work for the first two, three,
or four watchers, but this approach becomes very problematic if there are many watchers: Every time a new
watcher shows up we must change the weather service object.

Now let us face the second issue. In the naive solution, the weather service object will often hard wire the
knowledge about watchers in the program. This is probably OK for one, two or three watchers, but it is - of
course - tedious in case there are hundreds of watchers.

 190

There is a noteworthy a solution to the problem outlined above. It is described as a design pattern, because it
addresses a non-trivial solution to a frequently occurring problem. The design pattern is know as Observer.
The key ideas are:

1. Watcher objects subscribe to updates from the service object.
2. The service object broadcasts notifications about changes to watchers.
3. The watcher object may request details from the service object if they need to.

Below, in Program 24.1 and Program 24.2, we show the general idea/template of the Observer pattern.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

using System.Collections;
namespace Templates.Observer {

 public class Subject {
 // Subject instance variables

 private ArrayList observers = new ArrayList();

 public void Attach(Observer o){
 observers.Add(o);
 }

 public void Detach(Observer o){
 observers.Remove(o);
 }

 public void Notify(){
 foreach(Observer o in observers) o.Update();
 }

 public SubjectState GetState(){
 return new SubjectState();
 }
 }

 public class SubjectState {
 // Selected state of the subject
 }
}

 Program 24.1 Template of the Subject class.

The weather service object corresponds to an instance of class Subject in Program 24.1 and the watcher
objects correspond to observers, as shown in Program 24.2. In Program 24.3 we illustrate how the Observer
and Subject classes can be used in a client program. The programs are compilable C# programs, without
any substance, however. In an appendix - Section 58.2 - we show the weather service program and how it
uses the Observer pattern.

1
2
3
4
5
6
7
8
9
10
11
12

using System.Collections;
namespace Templates.Observer {

 public class Observer {

 private Subject mySubject;

 public Observer (Subject s){
 mySubject = s;
 }

 public void Update(){

 191

13
14
15
16
17
18
19
20
21
22

 // ...

 SubjectState state = mySubject.GetState();

 // if (the state is interesting){
 // react on state change
 // }
 }
 }
}

 Program 24.2 A templates of the Observer class.

In Program 24.3 we see that two observers, o1 and o2, are attached to the subject object (line 10 and 11). The
third observer o3 is not yet attached. o1 and o2 hereby subscribe to updates from the subject object. Let us
now assume that a mutation of the state in the subject object triggers a need for updating the observers. The
following happens:

1. The subject sends a Notify message to itself. (In Program 24.3 the client of Subject and Observer
sends the Notify message. This is an artificial and non-typical situation).

2. Notify updates each of the attached observers, by sending the parameterless Update message. This
happens in line 18 of Program 24.1 .

3. The Update method in the Observer class asks (if necessary) what really happened in the Subject
This is done by sending the message GetState back to the subject , see line 13 of Program 24.2 .
Individual observers may request different information from the Subject . Some observers may not
need to get additional information from the subject, and these observers will therefore not send a
GetState message.

4. GetState returns the relevant information to the observer. The observer does whatever it finds
necessary to update itself based on its new knowledge.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

using Templates.Observer;
class Client {

 public static void Main(){
 Subject subj = new Subject();
 Observer o1 = new Observer(subj),
 o2 = new Observer(subj),
 o3 = new Observer(subj);

 subj.Attach(o1); // o1 subscribes to updates from subj.
 subj.Attach(o2); // o2 subscribes to updates from subj.

 subj.Notify(); // Following some state changes in subj
 // notify observers.
 }
}

 Program 24.3 Application of the Subject and Observer
classes.

You should consult the appendix - Section 58.1 (only on web) - for a more realistic scenario in terms of the
weather service and watchers.

 192

24.2. Observer with Delegates and Events
Lecture 6 - slide 19

The Observer idea, as described in Section 24.1 can be implemented conveniently by use of events. We
introduced events in Chapter 23.

According to Observer, the subject has a list of observers which will have to notified when the state of the
subject is updated. We can can represent the list of observers as an event. Recall from Section 23.2 that an
event can contain a number of methods (all of which share a common signature described by a delegate type).
Each observer adds a method to the event of the subject object. The subject notifies the observers by
triggering the event.

In Program 24.4 we show a template of the Subject class, corresponding to Program 24.1 in Section 24.1.
The event is declared in line 9. The delegate type of the event is shown in line 4. Notice that the subscription
methods AddNotifier and RemoveNotifier simply adds or subtracts a method to the event. Upon
notification - see line 20 in the Notify method - the subject triggers the event. For illustrative purposes - and
in order to stay compatible with the setup in Program 24.4, we pass an instance of the subject state to the
observer, see line 20 of Program 24.4. In this way there is no need for the observer to ask for it afterwards.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

using System.Collections;
namespace Templates.Observer {

 public delegate void Notification(SubjectState ss);

 public class Subject {
 // Subject instance variable

 private event Notification observerNotifier;

 public void AddNotifier(Notification n){
 observerNotifier += n;
 }

 public void RemoveNotifier(Notification n){
 observerNotifier -= n;
 }

 public void Notify(){
 observerNotifier(new SubjectState());
 }
 }

 public class SubjectState {
 // Selected state of the subject
 }
}

 Program 24.4 Template of the Subject class.
1
2
3
4
5
6
7
8
9
10
11

using System.Collections;
namespace Templates.Observer {

 public class Observer {

 public Observer (){
 // ...
 }

 public void Update(SubjectState ss){
 // if (the state ss is interesting){

 193

12
13
14
15
16
17

 // react on state change
 // }
 }

 }
}

 Program 24.5 Template of the Observer class.

In line 10-11 of Program 24.6 we see that the two observers o1 and o2 add their Update (instance) methods
to the subject. This will add these methods to the event. The Update method of the Observer class is seen in
line 10-14 of Program 24.5.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

using Templates.Observer;
class Client {

 public static void Main(){
 Subject subj = new Subject();
 Observer o1 = new Observer(),
 o2 = new Observer(),
 o3 = new Observer();

 subj.AddNotifier(o1.Update);
 subj.AddNotifier(o2.Update);

 subj.Notify();
 }
}

 Program 24.6 Application of the Subject and Observer
classes.

In an appendix - Section 58.2 - we show a version of the weather center and weather watcher program
programmed with events.

 194

