41. Motivation for Generic Types

This chapter starts the lecture abgerterics. Generic types and generic methods. Viggherics we
are aiming at more general types (classes, stinttsfaces, etc). The measure that we will bring
into use idype parametrization.

This chapter is intended as motivation. Type patarieed types will be the topic of Chapter 42
and type parameterized methods will be treatechiaper 43.

41.1. Operations on sets

Lecture 11 - slide 2

In this chapter we decide to develop and use tesstt . We use the claset as a motivating
example. It is our goal, once and for all, to beedb write a classet that supports all possible
types of elements. It is the intention that thess$at can be used in any future program, in which
there is a need for sets.

It is noteworthy that .NET has not supported a mat#tical set class until version 3.5. As of
version 3.5, the clas@shSet <T> supports sets, see also Section 45.1. Thus, &ttbheof writing
this material, there was no set class availabtekenNET Framework.

The classet should represent a mathematical set of items. §ugeclassset with the usual and
well-known set operations:

« aSet.Member(element)

« aSet.nsert (element)

« aSet.Delete (element)

« aSet.Count

+ aSet.Subset (another Set)

« aSet.GetEnumerator ()

« aSet.ntersection (another Set)
+ aSet.Union (another Set)

« aSet.Diff (another Set)

The set operationst er sect i on, Uni on, andDi f f are handled in Exercise 11.1.

41.2. The classes IntSet and StringSet

Lecture 11 - slide 3

Let us imagine that we first encounter a need éts of integers. This causes us (maybe somewhat
narrow-minded) to write a class called Set . Our version of clasisnt Set is shown in Program

373

41.1. The version provided in the paper versiothefmaterial is abbreviated to save some space.
The version in the web version is complete withdaliails.

usi ng System
usi ng System Col | ecti ons;

public class IntSet {

private int capacity;

private static int DefaultCapacity = 10;
private int[] st ore;

private int next;

public IntSet (int capacity)({
this.capacity = capacity;
store = new int[capacity] ;

next = 0; /1l The next place to insert
}
public IntSet (): this(DefaultCapacity){
}

public IntSet (int[] el ements): this(elenents. Length){
foreach(int el in elements) this.Insert(el);

}

/| Copy constructor
public IntSet (IntSet s): this(s.capacity){
f oreach(int el ins) this.lInsert(el);

}

public bool Menber (int el ement) {
for(int idx = 0; idx < next; idx++)
if (elenent.Equal s(store[idx]))
return true
return fal se

}

public void Insert(int el ement) {
if ('this.Menber(elenment)){
if (this.Full){
Consol e. WiteLine("[Resize to {0}]", capacity * 2);
Array. Resi ze<int> (ref store, capacity * 2);
capacity = capacity * 2;

store[next] = el enent;
next ++;
}
}

public void Del ete(int el ement) {
bool found = fal se;
int foundldx = 0O;
for(int idx = 0; !found & (idx < next); idx++){
if (element.Equal s(store[idx])){
found = true
f oundl dx = i dx;

}

if (found){ /1 shift remaining elenents |eft
for(int idx = foundldx+1; idx < next; idx++)

374

store[idx-1] = store[idx];
store[next-1] = default(int);
next - - ;

}
}

/1 Additional operations: Count, Subset, ToString, Full, and Get Enumerator

Program 41.1 Theclass IntSet.

The class nt Set is an example of an everyday implementation afgat sets. We have not
attempted to come up with a clever representatiandllows for fast set operations. Tihe Set
class is good enough for small sets. If you aragte work on sets with many elements, you
should use a set class of better quality.

We chose to represent the elements in an integgey.ale keep track of the position where to
insert the next element (by use of the instanceblanext). If there is not enough room in the
array, we use tharray. Resi ze operation to make it larger. We delete elemems fthe set by
shifting elements in the array 'to the left’, inl@rto avoid wasted space. This approach is fairly
expensive, but it is good enough for our purposhs. nt Set class is equipped with a

Get Enuner at or method, which returns an iterator. (We encountéegdtors (enumerators) in the
I nterval class studied in Section 21.3. See also Sectidghf8i details on iterators. The

Get Enuner at or details are not shown in the paper version). Thereerator allows for traversal of
all elements of the set withf@each control structure.

A set is only, in a minimal sense, dependent oriythes of elements (in our case, the type). It

does not even matter if the type of elements iglaevtype or a reference type (see Section 14.1 and
Section 13.1 respectively). We do, however, applyadity on the elements, via use of thgal s
method. Nevertheless, the tyjpe occurs many times in the class definition of Set . We have
emphasized occurrencesiot with color marks in Program 41.1.

usi ng System
usi ng System Col | ecti ons;

cl ass App{

public static void Min(){
IntSet sl new IntSet (),
s2 new IntSet ();

sl.Insert(1l); sl.lnsert(2); sl.lnsert(3);
sl.Insert(4); sl.lnsert(5); sl.lnsert(6);
sl.Insert(5); sl.lnsert(6); sl.lnsert(8);
sl.Delete(3); sl.Delete(6); sl.lnsert(9);

s2.lnsert(8); s2.lnsert(9);

Consol e. WiteLine("sl: {0}", s1);
Consol e. WiteLine("s2: {0}", s2);

Il Exercises:
/I Console.WriteLine("{0}", s2.Intersection(s1));

375

/I Console.WriteLine("{0}", s2.Union(s1));
/I Console.WriteLine("{0}", s2.Diff(s1));

i f (sl.Subset(s2))
Consol e. WiteLine("sl is a subset of s2");
el se
Consol e. WiteLine("sl is not a subset of s2");

i f (s2.Subset(sl))
Consol e. WiteLine("s2 is a subset of sl1");
el se
Consol e. WiteLine("s2 is not a subset of s1");

Program 41.2 Aclient of IntSet.

In Program 41.2 we see a sample application ofclasset . We establish two empty integer sets
s1 ands2, we insert some numbers into these, and we trgauie of the set operations on them.
The comment lines 20-23 make use of set operatibinch will be implemented in Exercise 11.1.
The output of Program 41.2 confirms thatis a subset af1. The program output is shown in
Listing 41.3 (only on web).

We will now assume that we, a couple of days aftehave programmed claisst Set , realize a
need of classt ri ngSet . Too bad! Classt ri ngSet is almost lika nt Set . But instead of
occurrences afnt we have occurrences €fri ng.

We know how bad it is to copy the source textrafSet to a new file calledt ri ngSet , and to
globally replace 'int' with 'string’. When we ndednodify the set class, all our modifications will
have do be done twice!

For illustrative purposes - and despite the obsemgust described - we have made the class
StringSet, see Program 41.4 (only on web). We have alsacegptl the client program, in
Program 41.5 (only on web) and the program outplisting 41.6 (only on web).

41.3. The class ObjectSet

Lecture 11 - slide 4
In Section 41.2 we learned the following lesson:

There is an endless numberTgpeset classes. One for eadlype. Each of them is
similar to the others.

We will now review the solution to the problem winiwvas used in Java before version 1.5, and in

C# before version 2. These are the versions dfitbdanguages prior to the introduction of
generics.

376

The idea is simple: We implement a set class ohetd typedbj ect . We call itoj ect Set . The
type bj ect is the most general type in the type system (seddh 28.2). All other types inherit
from the classbj ect .

Below, in Program 41.7 we show the claspect Set . In the paper version, only an outline with a
few constructors and methods is included. The vebion shows the full definition of class
hj ect Set .

usi ng System
usi ng System Col | ecti ons;

public class ObjectSet {

private int capacity;

private static int DefaultCapacity = 10;
private Object] st ore;

private int next;

publ i c ObjectSet (int capacity){
this.capacity = capacity;
store = new Object[capacity] ;
next = 0;

}

/I Other constructors

publ i c bool Menber (Object el ement) {
for(int idx = 0; idx < next; idx++)
if (element.Equal s(store[idx]))
return true;
return fal se;

}

public void Insert (Object el ement) {
if ('this.Menber (el enent))
if (this.Full){
Consol e. WiteLine("[Resize to {0}]", capacity * 2);
Array. Resi ze<Object> (ref store, capacity * 2);
capacity = capacity * 2;

}
store[next] = el ement;
next ++;

}
}

/I Other methods

Program 41.7 An outline of the class ObjectSet.

We can now write programs with a setbbg, a set oBankAccount, a set of nt, etc. In Program
41.8 (only on web) we show a program, similar togfam 41.2, which illustrates setstoe
objects. (The clasa e can be found in Section 10.1).

The main problem with clag®j ect Set is illustrated below in Program 41.10. In line 2@we
make a set of dice{), a set of integers?), a set of stringssg), and set of mixed objects4. Let

377

us focus ors1. If we take a die out af1 with the purpose of usingtie operation on it, we need to
typecase the element twige. This is shown in line 23. From the compiler'smaf view, all
elements in the setL are instances of classj ect . With the castbDi e) o in line 23, we guarantee
that each element in the set isi@. (If an integer or a playing card should sneak the set, an
exception will be thrown). - The output of the prawg is shown in Listing 41.11 (only on web).

using System
using System Col | ecti ons;

cl ass App{

public static void Min(){

Die d1 = new Die(6), d2 = new Die(10),
d3 = new Die(16), d4 = new Die(8);
int sum = O;
string netString = "";
ObjectSet
sl = new ObjectSet (/I A set of dice
new Die[]{dl, d2, d3, d4}),
s2 = new ObjectSet (Il A set of ints
new oject[]{1, 2, 3, 4}),
s3 = new ObjectSet (Il A set of strings
new string[]{"a", "b", "c", "d"}),
s4 = new ObjectSet (/I A set of mixed things...

new object[]{new Die(6), "a", 7});
foreach(Object o in sl){
((Die) o0).Toss();
Consol e. WiteLine("{0}", (Die)o);
}

// Sonme details have been left out

Program 41.10 A client of ObjectSet - working with set
of different types.

378

41.4. Problems

Lecture 11 - slide 5

The classesnt Set, St ri ngSet andj ect Set suffer from both programming and type problems:

+ Problems withntSet andstringSet
- Tedious to write both version€opy and paste programming.
« Error prone to maintain both versions
+ Problems withDbjectSet
« Elements of the set must be downcasted in caseeec o use some of their
specialized operations
« We can create an inhomogeneous set
- A setof "apples” and "bananas"

Generic types, to be introduced in the followingater, offer a type safe alternatived ect Set ,
in which we are able to avoid type casting.

379

380

42. Generic Types

Generic types are types that carry type paramelgpe parameterized classes will be of particular
importance. The motivation for working with typerpaeterized classes was gained in Chapter 41.

42.1. The generic class Set<T>

Lecture 11 - slide 7

Let us, right away, present the generic set dass> . It is shown in Program 42.1. As usual, we
show an abbreviated version of the class in thempegition of the material.

usi ng System
usi ng System Col | ecti ons. Ceneri c;
usi ng System Col | ecti ons;

public class Set<T> {

private int capacity;

private static int DefaultCapacity = 10;
private T[] store;

private int next;

public Set(int capacity){
this.capacity = capacity;
store = new T[capacity] ;
next = 0;

}
public Set(): this(DefaultCapacity){
}

public Set(T[] elenments): this(elenments.Length){
foreach(T el in elenents) this.Insert(el);

}

/I Copy constructor
public Set(Set<T> s): this(s.capacity){
foreach(T el in s) this.Insert(el);

}

public bool Menber (T el ement){
for(int idx = 0; idx < next; idx++)
if (element.Equal s(store[idx]))
return true;
return fal se

}

public void Insert(T el ement){
if ('this.Mnber(elenment)){
if (this.Full){
Consol e. WiteLine("[Resize to {0}]", capacity * 2);
Array. Resi ze<T>(ref store, capacity * 2);
capacity = capacity * 2;

}

381

store[next] = el enent;
next ++;
}

}

public void Delete(T el ement){
bool found = fal se;
int foundldx = O;
for(int idx = 0; !found && (idx < next); idx++){
if (elenment.Equal s(store[idx])){
found = true;
foundl dx = idx;

}

if (found){ /I shift remaining elements left
for(int idx = foundl dx+1; idx < next; idx++)

store[idx-1] = store[idx];
store[next-1] = defaul t(T);
next - -;
}
}
/I Additional operations: Count, Subset, ToString, Full, and GetEnumerator

Program 42.1 Theclass Set <T>.

The advantage of classt<T> over clas®bjectSet becomes clear when we study a client of
Set<T> . Please take a look at Program 42.2 and compaiéhiProgram 41.10. We are able to
work with both sets of value types, suctsasint> , and sets of reference types, such as

Set<Die> . When we take an element out of the set it isveoessary to cast it, as in Program 41.10.

Notice that doreach loop does not provide the best illustration ofthspect, because ttype in
foreach(type var in collection) isused implicitly for casting a value in collaxtitotype.

The only way to access elements in a set is tatsigerator. Please take a look at Exercise 1f1.2 i

you wish to go deeper into this issue.

using System
using System Col | ecti ons;

cl ass App{

public static void Min(){
Die d1 = new Die(6), d2
d3 = new Die(16), d4
int sum = O;
string netString = "";

new Di e(10),
new Di e(8);

Il Working with sets of dice:
Set<Die> sl = new Set<Die> (/I A set of dice
new Di e[]{d1, d2, d3, d4});
foreach(Die d in sl1){
d. Toss();
Consol e. WiteLine("{0}", d);

382

/ Working with sets of ints

Set<int> s2 = new Set<int> (Il A set of ints
new int[]{1, 2, 3, 4});
foreach(int i in s2)
sum += i;

Consol e. WiteLine("Sum {0}", sum;

/' Working with sets of strings
Set<string> s3 = new Set<string> (// A set of strings
new string[]{"a", "b", "c", "d"});
foreach(string str in s3)
netString += str;
Consol e. Wi teLine("Appended string: {0}", netString);

Program 42.2 A client of Set <T> - working with sets of
different types.

The output of Program 42.2 is shown in Listing 4@83ly on web).

Exercise 11.1. Intersection, union, and difference: Operations on sets

On the accompanying slide we have shown a gen@ssset<T> .

Add the classical set operations intersection, uaind set difference to the generic classTt> .
Test the new operations from a client program.

Hint: The enumerator, that comes with the ckessr> , may be useful for the implementation of
the requested set operations.

Exercise 11.2. An element access operation on sets

The only way to get access to an element from & &4 use of the enumerator (also known as
the iterator) of the set. In this exercise we viskchange that.

Invent some operation on the set that allows ydake out an existing element in the set. This
corresponds to accessing a given item in an amaylist, for instance via an indexaer:r[i] and

I st[j]. Notice in this context that there is no ordemsn elements in the set. It is not natural
to talk about "the first" or "the last" elementtire set.

Given the invented operation $et<T> use it to illustrate that, for some concrete typeo
casting is necessary when elements are accesseddror>

383

42.2. Generic Types

Lecture 11 - slide 8

Let us now describe the general concepts behin@i@enypes in C#. C# supports not only generic
classes, but also generic structs (see Sectiof, 4&feric interfaces (see Section 42.8), and gener
delegate types (see Section 43.2). Overall, wendisish between templates and constructed types:

« Templates
« C<T>is not a type
+ C<T>is a template from which a type can be constructed
« Tis aformal type parameter
« Constructed type
« The type constructed from a template
« C<int> , C<string> , andD<C<int>>
« int ,string , andcC<int> areactual type parameters of C andD

When we talk about a generic type we do it in tleaning of a template.

The word "template" is appropriate, and in fact josthe point. But most C# writers do not use it,
because the word "template” it used in C++ in adalprelated, but slightly different meaning. A
template in C++ is a type parameterized class, wisiexpanded at compile time. Each actual type
parameter will create a new class, just like we ld@ueate it ourselves in a text editor. In C#,
generic classes are able to share the class rapagsa at run-time. For more details on these
matters, consult for instance [Golding05].

As a possible coding style, it is often recommentbedlse capital, single letter names (such, as
andu) as formal type parameters. In that way it becoeasser to recognize templates, to spot
formal type names in our programs, to keep temgplapart from constructed types, and to avoid
very name clauses of generic types. In situatiomsreva type takes more than one formal type
parameters, an alternative coding style callsdamal type parameter names likeandTy, (such
asTKey andTval ue) wherex andy describe the role of each of the formal type patans.

The ability to have generic types is knowrpasametric polymorphism

42.3. Constraints on Formal Type Parameters

Lecture 11 - slide 9

Let us again consider our implementation of theegerclassset<T> in Program 42.1. Take a close
look at the class, and find out if we make any agsions about the formal type parameten
Program 42.1. Will any typereally apply? Please consider this, before yowegxd!

In Set<T> it happens to be the case that we do not makassymption of the type parameter
This is typical forcollection classes (which are classes that serve as eleroamtainers).

384

It is possible to express a number of constrainta tormal type parameter

The more constraints an the more we can do anobjects in the body af<T>

Sometimes we write a parameterized classcsay, in which we wish to be able to make some
concrete assumptions about the type pararmetéou may ask what we want to express. We could,
for instance, want to express that

1. Tis avalue type, allowing for instance use oftifpe T? (nullable types, see Section 14.9)
insideC<T>.

2. Tis areference type, allowing, for instance, thegpam fragment v; v = null; inside
C<T>.

3. T has a multiplicative operator, allowing for expressions liket1, t2; ... t1 *
t2... INC<T>.

4. T has a method named that accepts a parameter which is also of type

5. T has a C# indexer of two integer parameters, algiorT t; ... t[i, j] ... within
C<T>.

6. Tis a subclass of clagankAccount , allowing for the program fragmenta;
ba.AddInterests(); within C<T>.

7. Timplements the interfagEnumerable , allowingforeach iterations based on T €kT>,
see Section 31.6 .

8. Tis atype with a parameterless constructor, allgwhe expressiomew T() in C<T>.

It turns out that the constraints in 1, 2, 6,] 8rcan be expressed directly in C#. The consgamnt
4 and 5 can be expressed indirectly in C#, wheteasonstraint in 3 cannot be expressed in C#.

Here follows a program fragment that illustrates ldgal form ofconstraints on type parameters in

generic types in C#. We define generic clags&sF, andG all of which are subclasses of clasa
andB are classes defined elsewhere. The constraintobreed in Program 42.4.

385

class C<S, T>: D
where T: A, ICloneable
where S: B {

.

class E<T>: D
where T: class {

.

class F<T>: D
where T: struct {

.

class &<T>: D
where T: new() {

Program 42.4 lllustrations of the various constraints on
type parameters.

The class has formal type parametes&ndT. The first constraint requires thats A, or a subclass
of A, and that it implements the interfac@ onabl e. Thus, only class or subclasses @fthat
implement d onabl e can be used as actual parameter correspondingrtee type parameter
must beB or a subclass @.

The clas€ has a formal type parameterwhich must be a class. In the same way, the elass a
formal type parametar, which must be a struct.

The classs has a formal type parameterwhich must have a parameterless constructor.

As a consequence of the inheritance rules in Cif,aringle class can be given in a constraint.
Multiple interfaces can be given. A class shoulthedefore any interface. Thus, in line 2 of
Program 42.4, whereis constrained by, |d oneabl e, A can be a class, and everything aftam
the constraint need to be interfaces.

42.4. Constraints: Strings of comparable elements

Lecture 11 - slide 10

We will now program a generic class with constaift/e will make a clask ri ng<T> which
generalizesyst em St ri ng from C#. An instance it ri ng<T> contains a sequence BValues/
T-objects. In contrast, an instancesgét em St ri ng contains a sequence of Unicode characters.
With use ofst ri ng<T> we can for instance make a string of integerssiagsof bank accounts, and
a string of dice.

386

Old-fashioned character strings can be ordere@usecwe have an ordering of characters. The
ordering we have in mind is sometimes calkedcographic ordering, because it reflects the
ordering of words in dictionaries and encyclopete also wish to support ordering of our new
generalized strings fromst ri ng<T>. It can only be achieved if we provide an ordehghe
values/objects i. This is done by requiring thatimplements the interfageconpar abl e, which
has a single methazbnpar eTo. For details om Conpar abl e andConpar eTo, please consult
Section 31.5.

Now take a look at the definition efri ng<T> in Program 42.5. In line 3 we state tBati ng<T>
should implement the interfac€onpar abl e<St ri ng<T>>. It is important to understand that we
hereby commit ourselves to implemertdoapar eTo method inSt ri ng<T>.

You may be confused about the interfacenpar abl e, as discussed in Program 42.5 in contrast to
| Corpar abl e<S>, which is used asConpar abl e<St ri ng<T>> in line 3 of Program 42.5.

| Corrpar abl e<S> is a generic interface. It is generic becausedlsvs us to specify the parameter
to the methoatonpar eTo with better precision. We discuss the generiafate! Conpar abl e<S>

in Section 42.8.

There is an additional important detail in linef3Poogram 42.5, namely the constraint, which is
colored. The constraint states that the typeust ba Conpar abl e itself (again using the generic
version of the interface). In plain English it medhat there must becanpar eTo method available
on the type, which we provide as the actual tygarmpater of our new string class. Our plan is, of
course, to use thenpar eTo method ofT to program th&onpar eTo method ofSt ri ng<T>.

usi ng System

public class String<T>: | Conparabl e<String<T>> where T: IComparable<T> {
private T[] content;
public String(){

content = new T[O];
}

public String(T e){
content = new T[]{e};
}

public String(T el, T e2){
content = new T[]{el, e2};
}

public String(T el, T e2, T e3){
content = new T[]{el, e2, e3};
}

public int CompareTo(String<T> other){
int thisLength = this.content.Length,
ot herLength = ot her.content. Length;

for (int i =0; i < Math.M n(thisLength, otherLength); i++){
i f (this.content[i].CompareTo(other.content]i]) <0)
return -1;
el se i f (this.content[i].CompareTo(other.content]i]) > 0)

387

return 1;

/'l 1 ongest possible prefixes of this and other are pair-w se equal.
if (thisLength < otherlLength)
return -1,
el se if (thisLength > otherLength)
return 1;
el se return O;

}

public override string ToString(){
string res = "[";
for(int i = 0; i < content.Length;i++){
res += content[i];
if (i < content.Length - 1) res +="

}

reS +: II]II,
return res;

}

Program 42.5 The generic class St ri ng<T>.

In line 5 we see that a string Dielements is represented as an arrayefments. This is a natural
and straightforward choice. Next we see four caestrs, which allows us to make strings of zero,
one, two or three parameters. This is convenient,gmod enough for toy usage. For real life use,
we need a general constructor that accepts an afrfaglements. The can most conveniently be
made by use of parameter arrays, see Section 20.9.

After the constructors, from line 23-39, we seeioylementation o€onpar eTo. From an overall
point of view we can observe that it ugespar eTo of typeT, as discussed above. This is thee
aspects in line 28 and 30. It may be sufficienhtike this observation for some readers. If you
want to understand what goes on inside the metiead, on.

Recall thattonpar eTo must return a negative result if the current abgéess thamt her, O if the
current object is equal @ her, and a positive result if the current object isajer thamt her . The
for-loop in line 27 traverses the overlapping pre$ of two strings. Inside the loop we return a
result, if it is possible to do so. If the for-lotgrminates, the longest possible prefixes of W t
string are equal to each other. The lengths ofwtleestrings are now used to determine a result.

If Tis the typehar, if the current string is "abcxy”, andaf her is "abcxyz", we compare "abcxy"
with "abcxy" in the for loop. "abcxy" is shorterathh "abcxyz", and therefore the result of the
comparison -1.

The methodrost ri ng starting in line 41 allows us to print instancésia i ng<T> in the usual way.

In Program 42.6 we see a client classtofi ng<T>. We construct and compare strings of integers,
strings of strings, strings of doubles, stringbobdleans, and strings of dice. The dimmed method
Repor t Conpar e activates thet ri ng<T> operationConpar eTo on pairs of such strings.

Repor t Conpar e is a generic method, and it will be "undimmed" axglained in Program 43.1.
Take a look at the program output in Listing 421d &e sure that you can understand the results.

388

using System
class StringApp{
public static void Min(){

Repor t Conpar e(new String<int>(1, 2) ,
new String<int>(1))
Report Conpar e(new String<string>("1", "2", "3")
new String<string>("1"));
Report Conpar e(new String<double>(0.5, 1.7, 3.0) ,
new String<double>(1.0, 1.7, 3.0));
Repor t Conpar e(new String<bool>(true, false) ,
new String<bool>(false, true));
Report Conpar e(new String<Die>(new Die(), new Die())
new String<Die>(new Die(), new Die()));

s. ConpareTo(t)

Program 42.6 Illustrating Srings of different
types.

Result of conparing [1, 2] and [1]: 1

Result of conparing [1, 2, 3] and [1]: 1

Result of conparing [0,5, 1,7, 3] and [1, 1,7, 3]: -1
Result of conparing [True, False] and [Fal se, True]: 1
Result of conparing [[3], [6]] and [[3], [5]]: 1

Listing 42.7 Output from the Sring of different types
program.

Exercise 11.3. Comparable Pairs
This exercise is inspired by an example in the Hdopklansen and Sesto@# Precisely.

Program a clasSomparablePair<T,U> which implements the interface
IComparable<ComparablePair<T,U>> . If you prefer, you can build the class
ComparablePair<T,U> on top of clas®air<sS,T> from an earlier exercise in this lecture.

It is required that andu are types that implemenrbmparable<T> andicomparable<U>
respectively. How is that expressed in the ctassparablePair<T,u> ?

The generic classomparablePair<T,U> should represent a pdtru) of values/objects whetas
of typeT andu is of typeu. The generic class should have an appropriatercmter that
initializes both parts of the pair. In additioneth should be properties that return each of the
parts. Finally, the class should - of course - enpént the operatiotonpar eTo because it is
prescribed by the interfaggstem.IComparable<ComparablePair<T,U>>

Given two pairs p = (a,b) and g= (c,d). p is coasd less than g if a is less than c. If a is etyual

389

c then b and d controls the ordering. This is sintib lexicographic ordering on strings.

If needed, you may get useful inspiration fromithenpar abl e classString<T> on the
accompanying slide.

Be sure to test-drive your solution!

42.5. Another example of constraints

Lecture 11 - slide 11

We will now illustrate the need for the class atrda constraints. We have already touched on
these constraints in our discussion of Program.42.4

In Program 42.8 we have two generic clagsasdD. Each of them have a single type paramater,
andu respectively. As shown witred color in line 7 and 15, the compiler complainslite 7 we
assign the valueul | to the variable of typeT. In line 15 we make a nullable type from u. (If
you wish to be reminded about nullable types, clir&ection 14.9). Before you go on, attempt to
explain the error messages, which are shown as eotsnn Program 42.8.

/* Exanple from Hansen and Sestoft: C# Precisely */

cl ass C<T>{
/I Compiler Error message:
/I Cannot convert null to type parameter 'T' becaus e it could
/I be a value type. Consider using 'default(T)' ins tead.
T f=null;
}

cl ass D<U>{
/[l Compiler Error message:
/[The type 'U' must be a non-nullable value type i n order to use
/l it as parameter 'T' in the generic type or metho d
/['System.Nullable<T>'
u?f ;

Program 42.8 Two generic classes C and D - with
compiler errors.

In Program 42.9 we show new versionsof> andb<U>. Shown inpur ple we emphasize the
constraints that are necessary for solving thelpnos.

The instance variableof typeT in C<T> is assigned toul | . This only makes sensefifis a
reference type. Therefore thiass constraint oI is necessary.

The use obr? in D<U> only makes senselifis a value type. (To understand this, you arerredeto

the discussion in Section 14.9). Value types ira@#provided by structs (see Section 6.6). The
struct constraint oru is therefore the one to use.

390

/* Exanple from Hansen and Sestoft: C# Precisely */

cl ass C<T> where T: class {
Tf = null;
}

cl ass D<U> where U: struct {
u? f;
}

cl ass Appl{

/I Does NOT compile:
C<double> ¢ = new C<double>();
D<A> d=new D<A>();

/I OK:

C<A> cl=new C<A>();
D<double> d1 = new D<double>();

}

class A{}

Program 42.9 Two generic classes C and D - with the
necessary constraints.

In line 11-21 we show clients a¢kT> andb<u>. The compiler errors in line 14 and 15 are easy to
explain. The typeoubl e is not a reference type, aadwhich is programmed in line 23, is not a
value type. Thereforéoubl e andA violate the constraints akT> andb<U>. In line 18 and 19 we
switch the roles ofioubl e andA. Now everything is fine.

42.6. Variance

Lecture 11 - slide 12

Consider the question asked in the following box.

A CheckAccount iSa BankAccount

But is aSet<CheckAccount> aSet<BankAccount> 7

You are encouraged to review our discussion ofdlagelation in Section 25.2.

The question is howet <T> is varies wherr varies. Variation in this context is specializaticf.
Chapter 25. Iset <T> specialized whenm is specialized?

Take a look at Program 42.10. In line 7-14 we aaoresta number of bank accounts and check
accounts, and we make a set of bank accosnisr(line 17) and a set of check accounts (n
line 18). In line 21 and 22 we populate the twes8b far so good. Next, in line 25 (shown in
purple) we play the polymorphism game as we have doneyriaes earlier, for example in line

391

13 of Program 28.17. Het <CheckAccount > iSa Set <BankAccount > line 25 of Program 42.10
should be OK (just as line 13 of Program 28.17K9.0

The compiler does not like line 25, however. Thesoa is thaset <CheckAccount > iSNOT a
Set <BankAccount >.

If we for a moment assume tlslt <CheckAccount > iSa Set <BankAccount > the rest of the
program reveals the troubles. We insert a BewkAccount object ins1, and via the alias
established in line 25, the n@®ankAccount object is also inserted ing@. When we in line 34-35
iterate through all theneckAccount objects of the se2, we encounter an instance of
BankAccount . We cannot carry out$meCheckAccount Oper at i on On an instance of
BankAccount .

using System
cl ass Set OF Account s{
public static void Min(){

/I Construct accounts:

BankAccount bal = new BankAccount ("John", 0.02),
ba2 = new BankAccount (" Anne", 0.02),
ba3 = new BankAccount (" Frank", 0.02);
CheckAccount cal new CheckAccount ("M ke", 0.03),
new CheckAccount ("Lene", 0.03),
new CheckAccount ("Joan", 0.03);

ca2 =
ca3 =
/I Constructs empty sets of accounts:

Set<BankAccount> s1 = new Set<BankAccount>();
Set<CheckAccount> s2 = new Set<CheckAccount>();

Il Insert elements in the sets:
sl.Insert(bal); sl.lnsert(ba2);
s2.lnsert(cal); s2.lnsert(ca2);

/I Establish s1 as an alias to s2

sl=s2 ; /l Compile-time error:
/I Cannot implicitly convert type 'Set<CheckAccount >!
Il to 'Set<BankAccount>'

/I Insert a BankAccount object into s1,

// and via the alias also in s2
sl.Insert(new BankAccount("Bodil", 0.02));

392

/I Activates some CheckAccount operation on a BankA ccount object
f oreach(CheckAccount ca in s2)
ca. SoneCheckAccount Oper ati on();

Consol e. WiteLine("Set of BankAccount: {0}", s1);
Consol e. WiteLine("Set of CheckAccount: {0}", s2);

Program 42.10 Sets of check accounts and bank
accounts.

The experimental insight obtained above is - peshaggainst our intuition. It can be argued that an
instance oBet <CheckAccount > should be a valid stand in for an instanceeaf<BankAccount >,

as attempted in line 25. On the other hand, itmasked if the extension &t <CheckAccount >

is a subset afet <BankAccount >. (See Section 25.2 for a definition of extensi@r)asked in this
way: Is the set of set of check accounts a suliseset of set of bank accounts? As designed in
Section 25.3 the set @heckAccountsis a subset of the set BankAccount. But this does not imply
that the_set of setf CheckAccount is a subset of the set of sétBankAccount . A set of

CheckAccount (understood as a single objects) is incompatililfle &vset oBankAccount
(understood as a single object).

Figure 42.1 A set of bank accounts and a set of check accounts

In Program 42.10 we establish the scene illustratédgure 42.1. More precisely, the illustration
shows the situation as of line 28 of Program 42TH@ problem is that we in line 31 add a new
instance oBankAccount tos1, which refers to an instance &t <CheckAccount >. Later in the
program (line 35) this would cause "a minor exmasiif the program was allowed to reach this
point . Thus, the real problem occurs if we muthteset of check accounts that are referred from a
variable of static typset <BankAccount >. (See Section 28.10 for the definitiongtic type).

In general, we distinguish between the followingds of variances in betwesat <T> andT:

393

« Covariance
+ The set types vary in the same way as the elempest
« Contravariance
« The set types vary in the opposite way as the aletgpes
« Invariance
+ The set types are not affected by the variatiorte@tlement types

If Program 42.10 could be compiled and executetiaut problems (if line 25 is considered OK),
then we would have covariance betwsen<T> andT

In C#Set <T> is invariant in relation to.

We notice that the problem discussed above is a@irtolthe parameter variance problem, which we
discussed in Section 29.2.

C# and Java do both agree on invariance in bet&eesT> andT. But in contrast to C#, Java has a
solution to the problem in terms wfldcard types. We realized above thagét <T> is not a
generalization of all sets. In Java 1.5, a wilddgsk written aset <?> (a set of unknown) is a
generalization of all sets. It is, however, notgible to mutate an object of static tyge <?>. If

you are interested to known more about generidawa, you should consult Gilad Bracha's tutorial
"Generics in the Java Programming Language”, [Bx2004].

42.7. Generic structs

Lecture 11 - slide 13

It is possible to make type parameterized strisitsilar to the type parameterized classes that we
have seen in the previous sections.

As an example we will see how we can define theegerstruct\ul | abl e<T> which defines the
type behind the notatiore for an arbitrary value type Nullable types were discussed earlier in
Section 14.9. Recall that nullable types enjoyipaldr compiler support, beyond the translation of
T2 toNul | abl e<T>. This includes support of lifted operators (operathat are extended to work
onT? in addition tor) and support of theul I value as such.

usi ng System

public struct Null abl e<T>
where T :struct {

private T val ue;
private bool hasVal ue;

public Nullable(T val ue){
this.value = val ue;
this. hasVal ue = true;

}

394

public bool HasVal ue{

get{
return hasVal ue;

}
}

public T Val ue{
get{
i f (hasVal ue)
return val ue;
el se throw new I nval i dOperati onException();

}
}

Program 42.11 A partial reproduction of struct
Nul | abl e<T>.

The generic structul | abl e<T> aggregates a value of type T and a boolean vaheboolean
value is stored in the boolean instance variabte/al ue. If nv is of typeNul | abl e<T> for some
value typert, and if the variabl@asval ue of nv isf al se, thennv is considered to have the value
nul I . The compiler arranges that the assignment nul | is translated tav. hasval ue = fal se.
This is somehow done behind the scene bedausal ue is private.

42.8. Generic interfaces: IComparable<T>

Lecture 11 - slide 14

In this section we will take a look at the genemnierfacel Conpar abl e<T>. We have earlier in the
material (Section 31.5) studied the non-generierfatel conpar abl e, see Program 31.6.

If you review your solution to Exercise 8.6 you glibbe able to spot the weakness of a class
Conpar abl eDi e, which implements Conpar abl e. The weakness is that the parameter of the
methodConpar eTo must have abj ect as parameter. A method with the signature

Conpar eTo(Di e) does not implement the interfaiceonpar abl e. (Due to static overloading of
methods in C#, the methodsnpar eTo(Obj ect) andConpar eTo(Di e) are two different methods,
which just as well could have the signatubeisect Conpar eTo(Obj ect) andbi eConpar eTo(Di e)).
Thus, as given by the signaturedofipar eTo, we compare & e and any possible object.

In Program 42.12 we reproduceonpar abl e<T>. Program 42.12 corresponds to Program 31.6.
(Do not use any of these - both interfaces arespdrtheSyst emnamespace). As it appears, in the
generic interface the parameterofipar eTo is of typeT. This alleviates the problem of the non-
generic interfaceConpar abl e.

395

using System

public interface | Conparabl e <T>{
i nt ConpareTo(T other);

}

Program 42.12 Areproduction of the generic interface
| Conpar abl e<T>.

Below we show a version of clasise which implements the interfac€onpar abl e<Di e>. You
should notice that this allows us to use as formal parameter of the methaugpar eTo.

using System

public class Die: IComparable<Die> {
private int nunber O Eyes;
private Random randomNunber Suppl i er;
private const int maxNunber Of Eyes = 6;

public Die(){
randomNunber Suppl i er = Random I nst ance() ;
nunber O Eyes = NewTossHowManyEyes() ;

}
public int CompareTo(Die other)
return this.numberOfEyes.CompareTo(other.number OfEyes);

/!l O her Die nethods

Program 42.13 A class Die that implements
| Conpar abl e<T>.

The implementation of the generic interface is ntgpe safe and less clumsy than the
implementation of the non-generic solution

42.9. Generic equality interfaces

Lecture 11 - slide 15

Before reading this section you may want to renyiodrself about the fundamental equality
operations in C#, see Section 13.5.

There exist a couple of generic interfaces whidsprbesqual s operations. The most
fundamental i$ Equat abl e<T>, which prescribes a singigual s instance method. It may be
attractive to implementequat abl e in certain structs, because it could avoid thedreddoxing the
struct value in order to make use of the inhergchl s method from clasesbj ect .

| Equal i t yConpar er <T> is similar, but it also supportsGat HasCode method. (Notice also that the

signatures of thequal s methods are different in the two interfacemjuat abl e<T> prescribes
x. Equal s(y) whereas Equal i t yConpar er <T> prescribegqual s(x, y)).

396

Below, in Program 42.14 and Program 42.15 we sheproductions of the two interfaces. Notice
again that the two interfaces are present in tineas@acesyst emand
System Col | ecti ons. Generi c respectively. Use them from there if you need them

usi ng System

public interface | Equatable <T>{
bool Equals (T other);

}

Program 42.14 Areproduction of the generic interface
| Equat abl e<T>.

usi ng System

public interface | EqualityConparer <T>{
bool Equals (T x, T y);
int GetHashCode (T x);

}

Program 42.15 A reproduction of the generic interface
| Equal i t yConpar er <T>.

Several operations in generic collections, sud asst <T> in Section 45.9, need equality
operations. ThendexOf method inLi st <T> is a concrete example, see Section 45.11. Using

| st. I ndexOF (el) we search for the eleme#it in the listl st . Comparison o&l with the elements
of the list is done by thdefault equality comparer of the typer. The abstract generic class

Equal i t yConpar er <T> Offers a stati©ef aul t property. Thedef aul t property delivers the default
equality comparer for type The abstract, generic clasgial i t yConpar er <T> implements the
interfacel Equal i t yConpar er <T>.

Unfortunately the relations between the generierfates Equat abl e<T> and

| Equal i t yConpar er <T>, the clas€qual i t yConpar er <T> and its subclasses are quite complicated.
It seems to be the cases that these interfaceslasses have been patched several times, during the
evolution of versions of the .Net libraries. Thedli landscape of types is therefore more
complicated than it could have been desired.

42.10. Generic Classes and Inheritance

Lecture 11 - slide 16

In this section we will clarify inheritance rela¢ito generic classes. We will answer the following
guestions:

Can a generic/non-generic class inherit from a non-generic/generic class?

The legal and illegal subclassings are summariesuoib

397

- Legal subclassing
« A generic subclass of a hon-generic superclass
« A generic subclass of a constructed superclass
« A generic subclass of generic superclass

- lllegal subclassing
« A non-generic subclass of generic superclass

You can refresh the terminology (generic class/ttanted class) in Section 42.2.
The rules are exemplified below.

using System

/I A generic subclass of a non-generic superclass.
cl ass SoneCeneri cSet 1<T>: | nt Set {
I

}

/I A generic subclass of a constructed superclass
cl ass SoneCeneri cSet 2<T>: Set <i nt >{
I

}

/I A generic subclass of a generic superclass

/I The most realistic case

cl ass Speci al i zedSet <T>: Set <T>{
1.

}

/I A non-generic subclass of a generic superclass
/I lllegal. Compile-time error:
/I The type or namespace name 'T' could not be foun d
cl ass Set: Set<T>{
I

}

Program 42.16 Possible and impossible subclasses of
Set classes.

From line 4 to 6 we are about to program a geradai€sSomeGener i cSet 1<T> based on a non-
generic classnt Set . This particular task seems to be a difficult enae, but it is legal - in general
- to use a non-generic class as a subclass ofigehess.

Next, from line 9 to 11, we are about to progragesneric clasSoneGeneri cSet 2<T> based on a
constructed classet <i nt >. This is also OK.

From line 15-17 we show the most realistic caseehkige program a generic class based on another
generic class. In the specific example, we are atoospecializeset <T> to Speci al i zedSet <T>.

The type parametarof Speci al i zedSet <T> also becomes the type parametesea<T>. In

general, it would also be allowed fggeci al i zedSet <T> to introduce additional type parameters,
such as irspeci al i zedSet <T, S>: Set <T>.

398

The case shown from line 22 to 24 is illegal, siyrpécause is not the name of any known type.
In line 22,7 is name of amctual type parameter, batis not around! It is most likely that the
programmer is confused about the rolefoofnal andactual type parameters, see Section 42.2.

42.11. References

[Bracha2004] Gilad Bracha, "Generics in the JawwgRimming Language", July 2004.
[Golding05] Tod GoldingProfessional .NET 2.0 Generics. Wiley Publishing, Inc., 200!

399

400

43. Generic Methods

We are used to working with procedures, functiams] methods with parameters. Procedures,
functions and methods are all known as abstractidmparameter is like a variable that generalizes
the abstraction. Each parameter of a procedurgaidn, or a method is of a particular type. In

this chapter we shall see how such types themsearebe passed as parameters to methods. When
methods are parameterized with types, we talk ady@neric methods.

43.1. Generic Methods

Lecture 11 - slide 18

In Section 42.2 we realized that a generic typel{ss a generic class) is a template from which it
is possible to construct a real class. In the samg a generic method is template from which we
can construct a real method.

In C# and similar languages, all methods belongdsses. Some of these classes are generic, some
are just simple, ordinary classes. We can havergemethods in both generic types, and in non-
generic types.

Our first example in Program 43.1 is the generithm@&Repor t Conpar e in the non-generic class
St ri ngApp. Report Conpar e iS a method in the client class®fr i ng<T> which we encountered in
Section 42.4. When we first met it, we where négriested in the details of it, so therefore it was
dimmed in Program 42.6.

Notice first that the methoekpor t Conpar e takes two ordinary parameterandt . They are both

of typest ri ng<T> for some given typ&. The method is supposed to report the orderiryg of
relative tot via output written to the consoleis a (formal) type parameter of the method. Type
parameters of methods are given in "triangular ket <.. > in between the method name and the
ordinary parameter list. It is highlighted withir ple in Program 43.1.

The formal type parameter Bépor t Conpar e is passed on as an actual type parameter to our
generic classt ri ng<T> from Section 42.4. If we look at our definitiontble generic class
String<T> in Program 42.5 we notice thatmust implementconpar abl e<T>. This is a constraint
of T, identical to one of the constraints of type pagters of types, see Section 42.3. The only way
to ensure this in Program 43.1 is to add the camitto the generic method. This is thee part,

see line 15.

Notice in line 7-11 of Program 43.1 that the actypk parameter atepor t Conpar e iS not given
explicitly. The actual type parameters of the foadls are conveniently inferred from the conteit. |

is, however, possible to pass the actual type petemexplicitly. If we chose to do so, line 7 of
Program 43.1 would be

Repor t Conpar e<i nt >(new String<int>(), new String<int>(1));

401

The remaining aspects Bépor t Met hod are simple and straightforward.

usi ng System
class StringApp{
public static void Min(){

Report Conpare(new String<int>(), new String<int>(1));

Report Conpar e(new String<int>(1), new String<int>(1));

Report Conpare(new String<int>(1,2,3), new String<int>(1));
Report Conpare(new String<int>(1), new String<int>(1,2,3));
Report Conpare(new String<int>(1,2,3), new String<int>(1,2,3));

}
public static void ReportCompare <T>(String<T> s, String<T> t)
where T: IComparable<T> {
Console.WriteLine("Result of comparing {0} and {1}: {2}",
s, t, s.CompareTo(t));
}

}

Program 43.1 The generic method ReportComparein
the generic String programs.

Let us now study an additional program example @éheric methods. Program 43.2 contains a
bubblesort method in line 5-18ubbl esort sorts an array of element typewhereT is a type
parameter of the method. The type parameter makesubblesort method more general, because it
allow us to sort an array of arbitrary typeThe only requirement is, quite naturally, that
objects/values of type typeshould be comparable, such that we can ask ivahe is less than or
equal to another value. This is expressed by ¢hepar abl e<T> constraint on T at the end of line

5.

The implementation of bubblesort in Program 432 tasurprises. In a double for loop we
compare and swap elements. Comparison is madebfobsicause[i] values are of type that
implements conpar abl e<T>. Swapping of elements are done bys$hep method via use of C#
ref parameters, see Section 20.6. Notice $hap is also a generic method, because it can swap
values/objects of arbitrary types. Be sure to matie formal type parameteiof Swap in line 13.

Finally we have the generic methrebort Arr ay, (see line 18-21), which simply prints the values
of the array to standard output.

usi ng System

cl ass Sort Denp{

static voi d BubbleSort<T>(T[] a) where T: IComparable<T> {
int n = a.lLength;
for (int i =0; i <n - 1; ++i)

for (int j =n-1;j >i; --j)

if (a[j-1].CompareTo(a[j]) > 0)
Swap(ref a[j-1], ref a[j]);

402

public static void Swap<T>(ref T a, ref T b) {

T tenp;
temp = a; a =Db; b =tenp;
}
public static void ReportArray<T>(T[] a) {

foreach(T t in a) Console. Wite("{0,4}", t);
Consol e. WiteLine();
}

public static void Min(){
doubl e[] da = new double[]{5.7, 3.0, 6.9, -5,3, 0.3};

Die[] dia = new Die[]{new Die(), new Die(), new Die(),
new Die(), new Die(), newDie()};

Report Array(da); BubbleSorti(da) ; ReportArray(da);
Consol e. Wi teLine();
Report Array(di a); BubbleSort(dia) ; ReportArray(dia);

Consol e. WiteLine();

/I Equivalent:

Report Array(da); BubbleSort<double>(da) ; ReportArray(da);

Consol e. WiteLine();

Report Array(di a); BubbleSort<Die>(dia) ; ReportArray(dia);
}

Program 43.2 A generic bubble sort program.

In themai n method we make an array of doubles and an arrdicef Values of typeoubl e are
comparable. We compile the program with a versioriassbi e that implements Conpar abl e<T>,
such as thei e class of Program 42.13. The callsBabbl eSort in line 29 and 31 do not supply an
actual type parameter Bobbl eSor t <T>. The compiler is smart enough to infer the actyjaé
parameter from the declared types of the variabdeanddi a respectively. In line 35 and 37 we
show equivalent calls @ubbl eSort to which we explicitly supply the actual type paeters

doubl e andbi e.

The output of Program 43.2 is shown in Listing 4@®3ly on web).

43.2. Generic Delegates

Lecture 11 - slide 19

Delegates were introduced in Section 22.1. Reaaih fthere that a delegate is a type of methods. In
the previous section we learned about generic ndstHbtherefore not surprising that we also need
to discuss generic delegates.

In Program 22.3 we introduced a delegaieer i cFuncti on, which covers all function from

doubl e todoubl e. In the same program we also introducedpose, which composes two numeric
functions to a single numeric function. In matheoatnotation, the composition 6andg is

403

denoted o g, and it maps x té(g(x)). We are now going to generalize the funcionpose, such
that it can be used on other functions of more g@sggnatures.

Let us assume that we work with two functiér@sdg of the following signatures:

- g:T—>U
. f:U—>S

Thus,g maps a value of type T to a value of typd bhaps a value of type U to a value of type S.
The composite functioho g therefore maps a value of type T to a value oé {$pvia a value of
type U:

« fog: T—S

In line 6 of Program 43.4 we show a delegate calledt i on, which is a function type that maps a
value of type S to values of type T. (It correspotaNuner i cFuncti on in Program 22.3). In line
10-13 of Program 43.4 we show the funct@npose, which we motivated abovEuncti on is a
generic delegate because it is type parameterizeshpose is a generic method, as discussed in
Section 43.1. The generic methed nt Tabl eOf Funct i on, shown in line 16-23, takesFanct i on

f and an arraynput Val ues of types[], and it applies and printgs) on each elementof

i nput Val ues.

using System
public class ConpositionDenp {

/I A function from Sto T
public delegate T Function <S, T>(S d);

/I The generic function for function composition
/[from T to Svia U
public static Function<T,S> Conpose<T, U, S>
(Function<Uy, S> f, Function<T, U> g){
return delegate(T d){return f(g(d));};
}

/I A generic PrintTable function
public static void PrintTabl eO Functi on<S, T>
(Function<S, T> f, string fnane,
S[] inputVal ues){
foreach(S s in inputVal ues)
Consol e. WiteLine("{0,35}({1,-4:F3}) ={2}", fname, s, f(s));

Consol e. WiteLine();
}

/I DieFromInt: int -> Die
public static Die DieFromint(int i){
return new Die(i);

}

/l Round: double -> int
public static int Round(double d){
return (int)(Math.Round(d));

404

public static void Min(){
doubl e[] i nput = new doubl e[25];
for(int i =0; i < 25; i++4)
input[i] = (double) (i*2);

/l Compose(DieFromint, Round): double -> Die
Il (via int)

Pri nt Tabl eOf Funct i on(Compose<double,int,Die>(DieFromInt, Round)
"Di e of double",
i nput) ;

Program 43.4 An example that involves other types
than double.

In line 43 ofmvai n we compose the two functiobseFr omi nt andRound. They are both
programmed explicitly, in line 26 and 31 respedtivé&he functionRound maps aloubl e to ani nt .
The functionDi eFr om nt maps an nt to abi e. Thus,Conpose(Di eFrom nt, Round) maps a
doubl e to abi e. Notice how we pass the three involved tygpasl e, i nt, andbDi e as actual type

parameters tGonpose in line 43.

The version of class e used in Program 43.4 can, for instance, be tles dhown in Program 12.6.
The parameter of the constructor determines themmar number of eyes of the die.

The output of Program 43.4 is shown in Listing 4@sBly on web).

405

43.3. Generic types and methods - Pros and Cons

Lecture 11 - slide 21

In this final section about generic types and meashwee will briefly summarize the advantages and
disadvantages of generics.

« Advantages
- Readability and Documentation
« More precise indication of types.
- Less downcasting from class Object
« Type Checking
- Better and more precise typechecking
- Efficiency

- There is a potential for more efficient programs
+ Less casting - fewer boxings
- Disadvantages

« Complexity
« Yet another abstraction and parametrization-lemelop of the existing

This ends the general discussion of generics.drdtture about collections, from Chapter 44 to
Chapter 48, we will make heavy use of generic types

406

