49. Correctness

This is the first chapter in the lecture about cacts and assertions. We all want to write conpeagrams.
But what is correctness? Program correctness myalvelative to something else. In this lecturenitke
discuss program correctness relative poagram specification. In Chapter 50, (the next chapter) we will
take a closer look at a particular approach to qammgspecification, on which the rest of this leetwiill be
based.

49.1. Software Qualities

Lecture 13 - slide 2

Program correctness is one of severafram qualities. A software quality is a positive property of prag.
There are many different software qualities thay fmaconsidered and promoted. In Table 49.1 wealist
number of important program qualities.

Quality Description Contrast

Correct Satigfies expectations, intentions, or Erroneous
requirements

Robust Can resist unexpected events Fragile

Reusable Can be used in several contexts Application specific

Simple Avoids complicated solutions Complex

Testable Constructed to ease revelation of errai-

Understandable Mental manageability Cryptic

Table 49.1 Different program qualities listed by name, description, and (for
selected qualities) a contrasting, opposite quality

Of all software qualities, correctness play a patér important role. Program correctness is i@aglie of its
own. Who would care about robustness, reusabidlitg, simplicity of an incorrect program?

453

49.2. Correctness

Lecture 13 - slide 3

Software correctness is only rarely an absoluteepin Correctness should be seen relative to samgeth
else. We will distinguish between program corressmelative to

« The programmers own, immediate comprehension
« Not formulated - not documented - volatile - ea$ilggotten
« Sometimes incomplete
« A program specification
« Formulated - written
« Well-considered and agreed upon
e Formal or informal
» Part of the program

At the time the program is written, it may be teimgtto rely on the comprehension and specificaitiaiine
mind of the programmer. It is not difficult to undand, however, that such a specification is ilelathe
specification may slide away from the original urs@nding, or it may totally fade away. In a softeva
house it may also easily be the case that the anuger is replaced. Of these reasons it is attetbivase
correctness on written and formal specifications.

In the following section we will discuss writtenchformal specifications that are based on mathealati
grounds.

49.3. Specifications

Lecture 13 - slide 4

We will introduce the following straightforward dieition of a specification:

A program specification is a definition of what a computer program is extpd to do
[Wikipedia].

What - not how.

Notice that specifications answ&hat questions, nothow questions.

In the area of formal mathematically-oriented sfieaiions, the following two variants are well-know

« Algebraic specifications

« Equations that define how certain operations warklesignated constructors
« Axiomatic specifications

« Logical expressions - assertions - associatedalgigses and operations

- Often divided into invariants, preconditions, amms$fgonditions

454

We will first study an algebraic specification o$tack, see Program 49.1. We have already encednigs
specification earlier in the material, namely ie ttontext of our discussion of abstract data typ&ection
1.5. From line 4-11 we declare the syntax of therafions that work on stacks. The operations are
categorized as constructors, destructors, andteedeé\s the name suggests, constructors are apesdhat
constructs a stack. Boplush andpop arefunctions that return a stack. This is different from theerative
stackprocedures we experienced in Program 30.1, which mutate tdeksvithout returning any value.

An arbitrary stack can be constructed in termsnaf or more constructors. Destructors are operatiats
work on stacks. (The term "destructor" may be sljgmisleading). Any stack can be constructed witho
use of destructors. As an example, the expregsigrpush(5, pop (push (6, push (7, new ()))))) is
equivalent withpush(7, new ()). The selectors extract information about the stack

Type stack [int]
decl are

constructors
new () -> stack;
push (int, stack) -> stack;

destructors
pop (stack) -> stack;

sel ectors
top (stack) ->int;
i snew (stack) -> bool;

for all
i inint;
s in stack;

| et
pop (new()) = error;
pop (push (i,s)) = s;
top (new()) = error;
top (push (i,s)) =i;
isnew (new()) = true;
i snew (push(i,s)) = fal se;

end

end stack.

Program 49.1 An algebraic specification of a stack.

The lines 12-21 define threeaning (also known as thgemantics) of the stack. It tells us what the concept of
a stack is all about. The idea is to define equattbat express how each destructor and each@eleatk

on expressions formulated in terms of constructing. equation in line 16 specifies that it is ameto pop
the empty stack. The equation in line 17 specthes pop applied on staskon which we have just pushed
the integer is equivalent witls. Please consider the remaining equations and swkethat you understand
their meaning relative to your intuition of theataoncept.

The specification in Program 49.1 tells us whatalsis. It is noteworthy that the specificatiorProgram
49.1 defines the stack concept without any bindng concrete representation of a stack. The spatdn
gives very little input to the programmer about Howmplement a stack with use of a list or angrfar
instance. A good specification answedsat questions, nothow questions.

If you wish to see other similar specificationsabktract datatypes, you may review our specifioatiuf
natural numbers and booleans in Program 1.9 angrdrol.10 respectively.

Below, in Program 49.2 we show an axiomatic spedtifbn of a single function, namely the square root
function. An axiomatic specification is formulatgdterms of a precondition and a postcondition. The
precondition specifies the prerequisite for actorabf the square root function. It states that tnly

455

possible to calculate the square root of non-negatumbers. The precondition constrains the owptite
function. In case of the square root function,ggeare of the result should be very close to tphatin

sqrt(x: Real) -> Real
precondition: x >= 0;

postcondi tion: abs(result * result - x) <= 0.000001

Program 49.2 An axiomatic specification of the squareroot
function.

In the rest of this lecture we will study objectemted programming, in which methods can be spetifiith
preconditions and postconditions.

456

50. Specification with preconditions and
postconditions

As exemplified at the end of the previous chagisFconditions and postconditions can be used toifgpe
the meaning of a function. In this chapter we wsiilldy preconditions and postconditions in moreitdeta

50.1. Logical expressions

Lecture 13 - slide 6

Logical expressions and assertions form the bdgseconditions and postconditions. Consequentéy/, w
define the concepts of logical expressions andésse before preconditions and postconditions:

A logical expression is an expression of type boolean

An assertion is a logical expression, which, if false, indicaga error [Foldoc]

A precondition of an operation is an assertion which must bejtrsiebefore the operation is
called

A postcondition of an operation is an assertion which must bejtrsieafter the operation has
been completed

We have worked with logical expressions numerausgiduring this course. Logical expressions améor
by relational, equational, conjunctional (and) digjunctional (or) operators. You find these oparatat
level 3, 4, 8, and 9 in Table 6.1.

Assertions are also used in the context of progesting. In Section 55.7 we surveyed a large ctileof
assertions, which are available in the NUnit testools for C#. As stated in Section 55.8, an &ssein a
test case, which returns the value false, cautshiee. A failed testcase signals that the unidemtest is

incorrect. Assertions used in test cases are sitoilassertions found in postconditions.

We can now characterize a precondition in the falg way:

» A precondition states if it makes sense to calbperation
« The precondition is prerequisite for the activation

The precondition is typically formulated in ternfgtoe formal parameters of the operation.

Similarly, a postcondition can be characterizetbisws:

- A postcondition states if the operation returnsdésired result, or has the desired effect, redativ
to the given parameters that satisfy the precanditi
« The postcondition defines timaeaning of the operation

457

The postcondition of a procedure or function F nlnestulfilled if the precondition of F holds, arfdA
terminates (F runs to its completion).

50.2. Examples of preconditions and postconditions

Lecture 13 - slide 7

We will now study preconditions and postconditiofishe operations in a circular list. A circulastlis a
linked list, in the sense we discussed in Sectmt4t However, the circular list discussed in g@stion is
only single-linked. The distinctive characteristadsa circular list are the following:

1. The lastLi nkedLi st Node is linked to the firsti nkedLi st Node of the list

2. Thed rcul arLi st object refers to thei nkedLi st Node of the last element instead of the
Li nkedLi st Node Of the first element.

We show a circular list with five elements in Figls0.1. The idea of referring the last elemenemdtof the
first element from thei r cul ar Li st object means that both the front and the reanefist can be reached
in constant time. In many context, this is a vesgful property. Notice also, that it is possibleléal with
double-linked circular lists as well.

 Circulartist >

@ © ®© © ©

Figure 50.1 Acircular list. Thelarge yellow object represents the circular list as
such. The circular green nodes represent the elements of the list. The rectangular
nodes are instances of a classakinto Li nkedLi st Node, which connect the
congtituents of the list together.

Below we specify the operations of the circularith preconditions and postconditions. The speaifon

in Program 50.1 defines the meaning of operatidiiseoyellow object in Figure 50.1. In the prograsting,
the preconditions are marked with keywoediuire, and shown imed. The postconditions are marked with
the keywordensure, and shown imlue. The names of the keywords stem from the objeented
programming language Eiffel [Meyer97, Meyer92, eB3], which is strong in the area of assertions.
Apart from that, the syntax used in Program 50Q#sand Java like.

class Circul arList {

/] Construct an enpty circular |ist
public CircularList()

require true;

ensure Enmpty();

/1l Return ny nunber of elenents
public int Size()
require true;
ensure size = Count El ements() && noChange;

458

/1l Insert el as a new first el enent
public void InsertFirst(Object el)
require !'Full();
ensure 'Enpty() & & IsCircular() & IsFirst(el);

/'l Insert el as a new | ast el enent
public void InsertlLast(Cbject el)
require !'Full();
ensure !'Enpty() &% IsCircular() &% IsLast(el);

/] Delete ny first el enent
public void DeleteFirst()

require !Enpty();
ensure

Enpty() ||
(IsCircular() & IsFirst(old RetrieveSecond()));

/'l Delete ny |ast el ement
public void Del eteLast ()

require !Enmpty();
ensure

Empty() ||
(IsCrcular() & isLast(old RetrieveButlLast()));

/[l Return the first elenent in the list
oj ect RetrieveFirst()

require !Enpty();
ensure IsFirst(result) && noChange;

// Return the last elenent in the |ist
hj ect RetrievelLast()

require !Enmpty();
ensure |sLast(result) && noChange;

Program 50.1 Circular list with preconditions and
postconditions.

The preconditionr ue of the constructor says that there are no paaiaelquirements to call the constructor.
This is natural and typical. The postconditionted tonstructor expresses that the constructor nakes
empty circular list.

The operatiorsi ze returns an integer corresponding to the counteabeu of elements in the list.

Count El enent s IS an operation, which counts the elements ifisheln a particular implementation of

G rcul arLi st, the operatiorsi ze my return the value of a private instance variadech keeps track of the
total number of elements in the lisbchange is a special assertion, which ensures that the stahe list

has not changed due the execution ofsthe operation. We see that the postcondition exprabses
consistency between the value returnedilne, and the counted number of elements in the list.

The operationmnsert Fi r st is supposed to insert an element, to becomergtesfement of the list (the one
shown at the left hand side of Figure 50.1). Theepndition expresses that the list must not bebiefibre
the insertion. The postcondition expresses thalishes not empty after the insertion, that istsl circular,
and thakl indeed is the first element of the list. The speaiion of the operationnsert Last is similar to
InsertFirst.

The operatiormel et eFi r st requires as a precondition a non-empty list. Téstqgondition obDel et eFi r st
expresses that the list either is empty or circufdahe list is non-empty (and therefore circulaffer the
deletion, the second element before the deletiost fmeithe first element after the deletion. Notiee

459

modifierol d. The value ofd d(expr essi on) is the value oéxpr essi on, as evaluated in the state just
before the current operation is execut@il et eLast IS Symmetric tmel et eFi r st .

Retri eveFirst returns the first element of the list. The predbod of Ret ri eveFi r st says that the list
must be non-empty in order for this operation t&ensense. The postcondition says that the resinitiéed
the first element, and thatt ri eveFi r st is a pure function (it does not mutate the stateecircular list).
RetriveLast IS symmetrical t®etri eveFirst.

What about the operatioBspt y, Ful | , Count El enent's, 1 sGircul ar, | sFirst, | sLast, Retri eveSecond,
andRet ri eveBut Last ? They are intended to be auxiliary, public booleperations in the circular list. In an
implementation oti r cul ar Li st we must implement these operations. They are sgupim be
implemented as simple as possible, and they arsupgtosed to carry preconditions and postconditions
order to be operational (meaning that the spetifinaan be confirmed at run-time) these auxiliary
operations be must be implemented. Nothing comesde! In reality, we check the consistency betwee
the operations listed in Program 50.1 and the Emyiboolean operations. An inconsistency revealsreor

in either the circular list operations, or in thex@iary operations. The necessary auxiliary ogereat are
typically much simpler than the circular list opiwas, and therefore an inconsistency most oftdrrexeal
an error in the way we have implemented a cirdidapperation.

50.3. An Assertion Language

Lecture 13 - slide 8
We are now about to focus on the language in whieliormulate the assertions (preconditions and

postconditions). In the previous section we haudistl examples, in which we have met several featur
the assertion language.

As it will appear, we are pragmatic with respectht® assertion language. The reason is that we allo
programmed, boolean functions to be used in therti@s language. These boolean function are sibling
the functions that we are about to specify.

It is an important goal that the preconditions Hrepostconditions should be checkable at program
execution time. Thus, the it should be possibleraatistic to evaluation the assertions at run-time

The following items characterize the assertiongliage:

460

Logical expressions - as in the programming languag
Programmed assertions - via boolean functionseoptbgramming language
« Should be simple functions
« Problems if there are errors in these
Universal (for all...") and existential'there exists...") quantifiers
» Requires programming - iteration - traversal
« It may be expensive to check assertions with gfiersi
Informal assertions, written in natural language
« Cannot be checked
« Much better than nothing
Special means of expression
« old Expr - The value of the expression at the beginnintpefoperation
« nochange - A simple way to state that the operation haschanged the state of the
object

Use of universal and existential quantifiers, kndvam mathematical formalisms, makes it hard tockhe
the assertions. Therefore such means of expressionest exist directly in the assertion languafje:d
wish to expresfor all ... orthere exists ... it must be programmed explicitly in boolean fuoos.

We may easily encounter elements of a specificahahwe cannot (or will no) check by programmed
exceptions. It may be too expensive, or too coraf#it to program boolean functions which repredersge
elements. In such situations we may wish to fatkian informal assertions, similar to comments.

50.4. References

[Switzer93] Robert SwitzeEiffel and Introduction. Prentice Hall, 1993.

[Meyer92] Bertrand Meyeliffel the Language. Prentice Hall, 1992.

[Meyer97] Bertrand MeyeQbject-oriented software construction, second edition. Prentice Hall,
1997.

461

462

51. Responsibilities and Contracts

This section is about responsibilities and cong,aand their connection to preconditions and postitions.
Recall from Section 2.2 in the initial lecture tha already touched on responsibilities in thesslgam of
the pizza delivery example, see Figure 2.1. Atethe of the chapter, in Section 51.8 we briefly désc
Design by Contract, which broadens the scope fplicability of contracts in the development process

51.1. Division of Responsibilities

Lecture 13 - slide 10

A class encapsulates some description of states@mé operations. A subset of the operations mpkbeu
interface between the class and other classesoddther, the class manages a certain amount of
responsibility. Internally, the class is responsible for keepghmystate consistent and sound. Externally, the
operations of the class are responsible for dediiom of the messages that they handle, and tHayjo&

the work (results) the operations deliver.

It is bad if a class is irresponsible. Class iroesgibility may occur if a pair classes both exghetother
class to be responsible.

It is also bad if a class is too responsible. A pabver-responsible classes redundantly caretahetsame
properties. This is not necessary, and it bloasathount of program lines in the implementatiothef
classes.

This leads us to the essence of this and the folpaections, namely division of responsibilitiest us first
enumerate the consequences of well-defined adiegfiiked division of responsibilities:

- Without well-defined division of responsibilities
» All classes accept a large responsibility
« All program parts check all possible conditionsfédsive programming)
« Makesalarge program even larger
- With well-defined division of responsibilities
« Operations can safely operate under given assungtio
« Itis well-defined which parts should check whi@nditions
« Smplifiesthe program

51.2. The highly responsible program

Lecture 13 - slide 11

Before we proceed to the role of preconditions postconditions in relation to responsibility, wdlwtudy
an example of an object-oriented program with tlegses that altogether are over-responsible.

We make our points with yet another version ofckaskAccount , see Program 51.2, in relation to a client

of classBankAccount , see Program 51.1. As you will realize below,itlustration of over-responsibility is
slightly exaggerated in relation to a real-life gmam.

463

Themi n method in Program 51.1 withdraws and deposits smonghe bank account referred by the
variableba, which is declared and initialized in line 5. Befavithdrawing money in line &kni n checks the
soundness of the account (wittcount oK), and it checks if there are enough money availahiter the
withdrawalmai n checks if the account is still sound. It also dewith the situation whenai n withdraws an

amount of money, which is greater then the balafitke account. Similar observations applyéposi t in
line 19.

public class dient{
public static void Min(){
BankAccount ba = new BankAccount ("Peter");

if (ba.Account OK && ba. EnoughMoney(1000))
ba. Wt hDr aw(1000) ;

el se

W t hdr awi ngProbl ens("...");
if (!ba.Account CK)

Maj or Probl en("...");

if (ba.Bal ance <= 0)
BankAccount Over dr awn(ba) ;

i f (ba.Account OK)
ba. Deposi t (1500);
if (!ba.Account CK)
Maj or Probl em("...");

Program 51.1 Excerpt of highly responsible class Client of
BankAccount.

In classBankAccount below, thew t hdr aw method in line 9-16 check the soundness of th& haoount,
and it deals with insufficient funds, before théuat withdrawal takes place in line 15.

Thepeposi t method in line 18-24 cares about the situationrer/iséents deposit very large amounts. In
such cases the bank account attempts to cheak ihtmey comes from illegal or criminal sources.

public class BankAccount {

private doubl e interestRate;
private string owner;
private doubl e bal ance;

11

public void Wthdraw (doubl e amount) {
if (!Account CK)
Conpl ai nAbout NonVal i dAccount () ;
else if (!this.EnoughMney(anount))
Conmpl ai nAbout M ssi nghvbney() ;
el se
bal ance -= anount;

}

public void Deposit (double amount) {
if (anmpbunt >= 10000000)
Checkl f MoneyHaveBeenSt ol en() ;

464

else if (!Account OK)
Conpl ai nAbout NonVal i dAccount () ;
al se bal ance += anount;

Program 51.2 Excerpt of highly responsible class
BankAccount.

Seen altogether, the amount of code in ProgramdidIProgram 51.2 is much larger than desired. The
checks that happen more than once should be elieinkn addition, some of the responsibilities dtidne
delegated to third party objects.

51.3. Responsibility division by pre and postcaiodis

Lecture 13 - slide 12

Preconditions and postconditions can be used tdalthhe responsibility between classes in an object
oriented program. The idea is to make it the resibdrty of particular objects to fulfill the preodlition of a
method, and to make it the responsibility of othigjects to fulfill the postcondition of a methodchélrules
are as follows:

« Fulfillment of the_precondition

« The responsibility of the caller

« The responsibility of thelient in an object-oriented program
+ Fulfillment of the_postcondition

» The responsibility of the called operation

« The responsibility of theerver in an object-oriented program

Client andserver are roles of objects relative to the message pagsibetween them. The client and server
roles were discussed in Section 2.1. In some bdbksserver is called a supplier.

Let us recall the precondition and the postconditibthe square root functicmrt , as shown in Program
49.2. A function that callsqgrt is responsible to pass a non-negative numbeietéutirction. If a negative
number is passed, the square root function shauttbthing at all to deal with it. If, on the otheand, a
non-negative number is passeddot , it is the responsibility ofqgrt to deliver a result which fulfills the
postcondition. Thus, the caller e§rt should do nothing at all to check or rectify theult.

Now we know who to blame if an assertion fails:

Blame the caller if a precondition of an operafiails

Blame the called operation if the postconditioranfoperation fails

465

51.4. Contracts

Lecture 13 - slide 13

In everyday life, a contract is an enforceable egnent between two (or more) parties. Often, cotdrae
regulated by law. In relation to programming in genh, we define a contract in the following way:

A contract expresses the mutual obligations in between phdsprogram that cooperate abo

the solution of some problem

In object-oriented programming it is natural that program parts are classes.

The preconditions and the postconditions of thdipuhethods in a class together form a contracivben
the class and its clients.

It can be a serious matter if a contract is brokebroken contract is tantamount to an inconsistenc
between the specification and the program, arglusually interpreted as an error in the programe &rror
is usually fatal. A broken contract should raisd throw an exception. Unless the exception is rethdhe
broken contract will cause the program to stop.

51.5. Everyday Contracts

Lecture 13 - slide 14
Contracts are all around us in our everyday/ life

When we do serious business in our everyday likeare very much aware of contracts. When we aecept
new job or when we buy a house, the mutual agreeméormulated in a contract.

Below we list some additional everyday contracts:

« Student and University
« The student enrolls some course
« The university offers a teacher, a room, superwisiod other resources
- Citizen and Tax office
« The citizen does a tax return
« The tax office calculates the taxes, and reguliepaid amount of money
« Football player and Football club
« The player promises to play 50 games per season
« The football club pays 10.000.000 kroner to the/g@iaor. month
- Citizen and Insurance company
« The insurance holder pays the insurance and prertosgvoid insurance fraud
« In case of a damage or accident, the insurance aoympays compensation

466

51.6. Contracts: Obligations and Benefits

Lecture 13 - slide 15

Contracts in object-oriented programs, specifieghtconditions and postconditions of certain meshod
express obligations and benefits.

In Figure 51.1 we personalize the obligations agwkfits of a client and server. In the contextighiFe 51.1

the server is called a supplier. This terminolag/well as the syntax used in the illustration, €draom the
object-oriented programming language Eiffel [Meykr®leyer92, Switzer93].

class Supplier| class Cliamr|

Supplier x;
vind opSupplier(.){

require pre opClient(...){

do
xopSupplier(..)
ensure posi I
! J

] I

Henefit:
| can assume that the precondition
i3 troe

Obligation:
| must make sure that the precondition
is true

Oblisation:

S Benefil:
I must fulfill the postecondition

I can assume that postcondition 18 true

Figure 51.1 A give-and-take situation involving a client and a server (supplier)
class.

The Client, shown to the right in Figure 51.1 musike an effort to arrange, that everything is pregéor

callingopsSuppl i er in the classuppl i er. These efforts can be enjoyed by the supplieralse he can take
for granted that required preconditionopBuppl i er is fulfilled.

The roles are shifted with respect to the reshefgame. The supplier must make an effort to ertbatehe
postcondition obpsuppl i er is fulfilled when the operation terminates. Traflects the fact the operation

has done the job, as agreed on in the contraottinn, the client can take for granted that theosjfie party
(the supplier) delivers an appropriate and comeslt.

The obligations and benefits of the contract caeuremarized as follows:

Obligation - May involve hard work

Benefit - A delight. No work involved

If you feel that the discussion in this sectiotois abstract, we will rephrase the essence in¢kegection
relative to the squareroot function.

467

51.7. Obligations and Benefits in Sqgrt

Lecture 13 - slide 16

In Program 49.2 of Section 49.3 we exemplified exatic specifications with a squareroot functiont s,
of convenience, rephrase the specification here.

sqrt(x: Real) -> Real
precondition: x >= 0;

postcondi tion: abs(result * result - x) <= 0.000001

Program 51.3 An axiomatic specification of the squareroot
function.

The obligations and benefits dr t , relative to its callers, are summarized in tHeWwing table:

- Obligation Benefit
Client Must pass a non-negative number Receives the squareroot of the input
Server Returns a number r for which r * r = x |Take for granted that x is non-negative

Table 51.1 Atabular presentation of the obligations and benefits of the
squareroot function (in a server role) and its callers (in a client role).

Notice in particular the obligation of the cliemtdathe benefit of the server, as emphasized ubiiget
color in the table.

51.8. Design by Contract

Lecture 13 - slide 27

As presented in Section 51.4, a contract of a atatfe sum of the assertions in the class. Thaentaact is
formed by concrete artifacts in the source program.

As part of the Eiffel efforts [Meyer97, Meyer92, &xer93], the use and benefits of contracts haes be
broadened such that contracts affects both desigihementation, and testing. The broad applicatibon
contract is known aBesign by Contract (DBC). Design by Contract is a trademark of theypany Eiffel
Software, and as such it may be problematic ta¢heséerm, at least in commercial contexts.

Design by Contract' (DBC) represents the idea of designing and spegfgrograms by means
of assertions

The following summarizes the use of contracts endtiferent phases of the software developmentga®ic
and beyond.

468

« Design: A pragmatic approach to program specification
« Documentation: Adds very important information to interface do@amtation of the classes
« Implementation: Guides and constrains the actual programming
« Verification: The program can be checked against the speatficatiery time it is executed
+ Test:

« Preconditions limit the testing work

« The check of postconditions and class invariantpato of the testing work
« Enduse: Trigger exception handling if assertions are \eda

The use of contracts for design purposes is ceftha contract of a planned class serves aspeugication
of the class. We have discussed program specifitatn Section 49.3 of this material.

Interface documentation - as pioneered by JavaDududes signatures of methods and informal
explanations found in so-called documentation conmmet is very useful to include both precondigpn
postconditions, and class invariants in such docuatien.

During program execution - both in the testing ghaisd in the end use phase - the actual state of th
program execution can be compared with the assertis such, it is possible to verify the implenagion
against the specification at program run-time nlireconsistency is discovered during testing, weeha
located an error. This is always a pleasure angteess. If an inconsistency is discovered duriryuese, an
exception is thrown. This is clearly less succds&xceptions have been treated in Chapter 33 pteh&6
of this material.

51.9. References

[Switzer93] Robert SwitzeEiffel and Introduction. Prentice Hall, 1993.

[Meyer92] Bertrand Meyeliffel the Language. Prentice Hall, 1992.

[Meyer97] Bertrand MeyeQbject-oriented software construction, second edition. Prentice Hall,
1997.

469

470

52. Class Invariants

In this chapter we will study yet another kind efeartions called class invariants. The class ianaserves
as a strengthening of both the preconditions aagtstconditions of all operations in the classwaswill
see in the first section of this chapter, a goad<invariant makes it easier to formulate botlegnditions
and postconditions of the operations in the class.

52.1. General aspects of contracts

Lecture 13 - slide 18

When we do computations in general, the valuebefariables in the running programs are modified
throughout the computation. In an object-orientexypam the states of the involved objects will vasythe
program execution progresses. This variation optlogram state is not arbitrary, however. Thengsisally
some rules that control and constrain the variati®uch rules can be formulatedmgriants. An invariant
describes some properties and relationships thaineconstant (do not vary) during the executioa of
program.

A classinvariant is an assertion that captures the propertieseatianships, which remain stable
throughout the life-time of instances of the class.

A classinvariant expresses properties of an object which are stalidletween operations

initiated via the public client interface
The following characterizes a class invariant:

» acts as a general strengthening of both the préeammdnd postcondition
« expresses aéalth criterion” of the object

- must be fulfilled by the constructor

« must be maintained by the public operations

« must not necessarily be maintained by private antkpted operations

The class invariant is an assertion, which shoalttie atvery stable point in time during the life of an
object. In this context, a stable point in timguist after the completion of the constructor antetween
executions of public operations on the class. étahle point in time, the object is in rest - thgeot is not
in the middle of being updated. The unstable pamtane are, for instance, in the middle of the&xtion
of a constructor, or in the middle of the executd@ public operation. In addition, a non-publpeaation
may leave the object in a state, which does nidfgdhe class invariant. The reason is that aipubl
operation may need to activate several non-pulpi@rations, and it may need to carry out additictete
changes (assignments) in order to reach a staketbiit satisfies the class invariant. A non-gudieration
may be responsible for only a fraction of the updpof an object.

You can think of the class invariant as a healiteigon, which must be fulfilled by all objects loetween
operations. As a precondition of every public ofieraof the class, it can therefore be assumedttieatiass
invariant holds. In addition, it can be assumed psstcondition of every public operation thatdlaess
invariant holds. In this sense, the class invas@ntes as a general strengthening of both thepd&wn
and the postcondition of public operations in tleess. Theeffective precondition is the formulated

471

precondition in conjunction with the class invatig@imilarly, theeffective postcondition is the formulated
postcondition in conjunction with the class invatia

A class invariant expresses some constraints that be true at every stable point in time
during the life of an object

Our primary interest in this chapter is class irts. Invariants are, however, also useful andbiamt in
other contexts.

52.2. Everyday invariants

Lecture 13 - slide 19

Before we proceed to a programming example, wedséllv the attention to useful everyday invariants.

« Coffee Machine
« In between operations there is always at |east one cup of coffee available
« Toilet
« Inbetween "transactions’ thereis always at least 0.75 meter of toilet paper on therall
« Keysand wallet
« In between using keys and/or wallet
» During daytime: Keys and wallet are in the pocket
« During nighttime: Keys are wallet are located on the bedside table or underneath
the pillow

The coffee machine invariant ensures that nobodlygwifor coffee in vain. If you happen to fill yojug
with the last cup of coffee from the coffee potuyoperation on the coffee machine is not compleatad
you have brewed a new pot of coffee.

The toilet paper invariant should be broadly apjated. As a consequence of the invariant, the diperaf
emptying the toilet paper reel is not completedt®fou have found and mounted an extra, full oéel
paper.

The last everyday invariant is - in my experienoten broken by women and children, because tbayod
always wear practical cloth with pockets suitaldleviallets and keys. As a consequence, these iamgort

items tend to be forgotten or misplaced, suchttiey are not available when needed. If the prop&sgd
and wallet invariant is observed, you either usekify or wallet, or you will be confident wherefitod them.

Adherence to invariants is the key to order indaily lives

472

52.3. An example of a class invariant

Lecture 13 - slide 20

It is now time to study the invariant of the ciraulist. Recall that we introduced preconditiond an

postconditions of the circular list in Program 56f1Section 50.2.

The class invariant of a circular lists exprestas the list is circular whenever it is non-emptyProgram
52.1 the invariant is formulated at the bottomhaf program, in line 43-45. In the same way as the
preconditions and postconditions, the class inmariavolves subexpressions that are realized by

programmed operationsnfpt y, i sCi rcul ar, andsi ze) of the class.

1 class GrcularList {

2

3 /1 Construct an enpty circular |ist
4 public G rcul arlList()

5

6 ensure enpty();

2

8 /1 Return my nunber of elenents

9 public int size()

10

11 ensure (size = countEl ements) && noChange;
12

13 // Insert el as a new first el enent
14 public void insertFirst(Object el)

16 ensure !enpty() &% isFirst(el);

18 // Insert el as a new | ast el enent
19 public void insertLast(Object el)

21 ensure !enpty() && islLast(el);

23 /] Delete ny first el enment
24 public void deleteFirst()

26 ensure (enpty() || isFirst(old retrieveSecond));

28 |/ Delete ny |ast el enent
29 public void del etelLast ()

31 ensure (enpty() || isLast(old retrieveButLast()));

33 // Return the first elenent in the |ist
34 (nject retrieveFirst()

36 ensure isFirst(result) && noChange;

38 // Return the last elenent in the |ist
39 bject retrievelLast()

40

41 ensure islLast(result) && noChange;
42

43 invariant

44 lenpty() inplies isCircular() and
45 enmpty() inplies (size() = 0);

46 }

Program 52.1 Circular list with a classinvariant.

473

If we compare Program 52.1 with Program 50.1 wasth noticing that the preconditions and postctods
become simpler and shorter, because they impliaggumes that the class invariant is true. Thigtjwe to
(a slightly idealised version of) Program 50.1, itheariant is factored out of all preconditions and
postconditions.

474

53. Inheritance is Subcontracting

In this chapter we will review inheritance - incing specialization - in the light of contracts. Siadization
was discussed in Chapter 25 and inheritance wasgdied in Chapter 27. The concept of contracts was
introduced in Chapter 51.

Stated briefly, we understand a subclasssaeontractor of its superclass. Being a subcontractor, it will
not be possible to carry out arbitrary redefiniiai operations in a subclass, relative to theraleaen
operations in the superclass.

53.1. Inheritance and Contracts

Lecture 13 - slide 22

The following question is of central importancehe discussion in this chapter.
How do the assertions in a subclass relate to the similar assertions in the superclass?

Figure 53.1 illustrates a class B which inheritarirclass A. Both class A and B have invariantaddition,
operations in class A that are redefined in claks® preconditions as well as postconditions.

class A class B A [
api...} §] opi..r {
require pre-opd 0| P :' require else pre-op
-
ENSUre posd-opf ' ap ensure then pos-ap
.)
im’ﬁrimt 1 Iml'lz;riam
class-A-imvariant] class-B-invarian

I L® I

Figure 53.1 The relationship between inheritance and contracts

The question from above can now to refined as \igdto

« How is the invariant in class B related to the mmat of class A?

« How is the precondition of the operatiomin class B related to the precondition of the adelen
operationop from class A?

« How is the postcondition of the operatignin class B related to the postcondition of therddden
operationop from class A?

Each of the three questions are symbolized wittdaguestion mark in Figure 53.1.

475

53.2. Subcontracting

Lecture 13 - slide 23

Due to polymorphism, an instance of a subclassactas atand in for - or subcontractor of - an instance of
the superclass. Consequently, the contract ofithelass must comply with the contract of the supes:
The contract of a subclass must therefore &eontract of the superclass' contract. This is closely eslat
to the principle of substitution, which we discusge Section 25.7.

The notion of subcontracting is realized by enfoggparticular requirements to preconditions,
postconditions, and class invariants across cl&sarchies. In order to understand inheritance as
subcontracting, the following rules must applydssertions in a subclass:

» The precondition must not be stronger than theqmdition in the superclass
« The postcondition must not be weaker than the paslition in the superclass
« The class invariant must not be weaker than thariamt in the superclass

As discussed in Section 50.1, a precondition af@eration states the prerequisites for callingofperation.
If the precondition is evaluated to the vatuge, the operation can be called. It is the respolitsilif the
caller (the client) to fulfill the precondition. €lpostcondition of the operation states the meamiiige
operation, in terms of requirements to the retunvedde and/or requirements to the effect of theatpen. It
is the responsibility of the operation itself ($erver) to fulfill the postcondition. The postcaimh must be
true if the precondition is satisfied and if the opermatterminates normally (without throwing an exdepy.

If we assume that the precondition of a redefingeration in a subclass is stronger than the preétonaf
the original operation in the superclass, therstii#lass cannot be used as a subcontractor afipleectass.
Consequently, the preconditions of redefined opmratin subclasses must be equal to or weakertkiean
preconditions of corresponding operations in supsses.

In case the postcondition of a redefined operatiansubclass is weaker than the postconditiohef t
operation in the superclass, the redefined operalies not solve the problem as promised by theairin
the superclass. Therefore, the postconditionsd#fieed operations must be equal to or stronger the
postconditions of corresponding operations in stipeses.

The superclass has promised to solve some probkether virtual operations. Redefined and overridden

operations in subclasses are obliged to solverblglgm under the same, or possible weaker conditithis

causes the weakening of preconditions. The job thgriee redefined and overridden operations musisbe
least as good as promised in the superclass. &bses the strengthening of postconditions.

The invariant of the superclass expresses requinesme instance variables in the superclass, blesfmints
in time. These instance variables are also présentbclasses, and the requirements to these tiersis
subclasses. Consequently, class invariants camenot veakened in subclasses.

Relative to Figure 53.1 the formulated preconditio& op2 in B. op serves as a weakeningpk- op1 of
A. op. The effective precondition @& op is pre-opl or pre-op2. Similarly, the effective postcondition of

B. op2 iSpost - opl and post - op2. The use of the Eiffel keywordgquire else andensure then signals this
understanding.

Operationsin subclasses cannot arbitrarily redefine/override operationsin super classes

476

In our discussion of redefinition of methods in 8@t 28.9 we came up with some technical and syictlc
requirements to redefinitions. The contributionlinad above in terms of subcontracting constra t
meaning (the semantics) of redefined operatiossiiitlasses in relation to the original operations i
superclasses. This is very satisfactory!

53.3. Class invariants in the triangle class néma

Lecture 13 - slide 24

We studied the specialization hierarchy of polygionSection 25.5. In Figure 53.1 below we revisé five
triangle classes. It is our interest to understaoa the class invariants are strengthened in ssbetaof the
most general triangle class.

A

IX \H h
Figure 53.2 The hierarchy of triangle classes. The root class represents the most
general triangle. The son to the left represents an isosceles triangle (where to
sides are of same lengths). The son to the right represents a right triangle, where
one of the angles is 90 degrees. The triangle at the bottom left is an equilateral

trianlge (where all three sides are of equal lengths). The triangle at the bottom
right is both an isosceles triangle and a right triangle.

The invariants of the five types of triangles candescribed as follows:

e Most general triangle:
3 angles, 3 edges
Sum of angles: 180 degrees

« Isoscelestriangle
Invariant of general triangle
2 edges of equal length

« Equilateral triangle:
Invariant of isosceles triangle
3 edges of equal length

« Right triangle:
Invariant of general triangle
Pythagoras

» Isoscelesright triangle:
Invariant of isosceles triangle
Invariant of right triangle

Notice that thetalic contributions above describe the strengthenings relative tanthariant of the
superclass.

477

53.4. Assertions in Abstract classes

Lecture 13 - slide 25

Abstract classes where discussed in Section 3G hbatract method in an abstract class definesaine

and parameters of the method - and nothing more.iftended meaning of the method is an informatenat
In Chapter 30 we did not encounter any means to@ef constrain the actual result or effect oftians
methods. In this section we will see how the meguoinan abstract method can be specified.

In Program 30.1 we studied an abstract ctaask. Below, in Program 53.1 we show a version of the
abstract stack with contractual elements - pret¢mmdi and postconditions. Possible future non-abstr
subclasses aft ack will be subcontractors. It means that such subelsvill have to fulfill the contract of
the abstract stack, in the way we have discuss8edtion 53.2.

478

using System
public abstract class Stack{

abstract public void Push(Cbject el);
require !full
ensure lenmpty && top() = el && size() =old size() + 1 &&
"all elenments below el are unaffected";

abstract public void Pop();
require !enpty();
ensure !full() && size() = old size() - 1 &&
"all elements renaining are unaffected"

abstract public Object Top
require !enpty();
ensure nochange && Top = "the nost recently pushed el ement"; {
get; }

abstract public bool Ful
require true
ensure nochange && Full = (size() = capacity); {
get; }

abstract public bool Enpty
require true
ensure nochange && Enpty = (size() = 0); {
get;}

abstract public int Size
require true
ensure nochange && Size = "nunber of elenents on stack"; {
get;}

public void Toggl eTop()
require size() >= 2; {
if (Size >= 2){
oj ect topEl1 = Top; Pop();
oj ect topEl 2 = Top; Pop();
Push(topEl 1); Push(topEl 2);

ensure size() = old size() &&
"top and el enent bel ow top have been exchanged"” &&
"all other elenents are unaffected";

}

public override String ToString(){
return("Stack");
}
}

Program 53.1 An abstract class with preconditions and
postconditions.

As we have seen beforequire clauses are preconditions aaur e clauses are postconditions. Notice the
use ofold andnochange, which we introduced in Section 50.2. Thilic strings' represent informal
preconditions. Alternatively, and more rigidly, wey consider to implement these parts of the asasras
private boolean functions. Notice, however, thatduld be quite demanding to do so, at least coetpar
with the remaining implementation efforts involved.

479

