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49.  Correctness 

This is the first chapter in the lecture about contracts and assertions. We all want to write correct programs. 
But what is correctness? Program correctness is always relative to something else. In this lecture we will 
discuss program correctness relative to a program specification. In Chapter 50, (the next chapter) we will 
take a closer look at a particular approach to program specification, on which the rest of this lecture will be 
based. 

  

49.1.  Software Qualities 
Lecture 13 - slide 2 

Program correctness is one of several program qualities. A software quality is a positive property of program. 
There are many different software qualities that may be considered and promoted. In Table 49.1 we list a 
number of important program qualities. 

Quality Description Contrast 

Correct 
Satisfies expectations, intentions, or 
requirements 

Erroneous 

Robust Can resist unexpected events Fragile 

Reusable Can be used in several contexts Application specific 

Simple Avoids complicated solutions Complex 

Testable Constructed to ease revelation of errors - 

Understandable Mental manageability Cryptic 

Table 49.1    Different program qualities listed by name, description, and (for 
selected qualities) a contrasting, opposite quality 

Of all software qualities, correctness play a particular important role. Program correctness is in a league of its 
own. Who would care about robustness, reusability, and simplicity of an incorrect program?  
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49.2.  Correctness 
Lecture 13 - slide 3 

Software correctness is only rarely an absolute concept. Correctness should be seen relative to something 
else. We will distinguish between program correctness relative to  

 • The programmers own, immediate comprehension 
• Not formulated - not documented - volatile - easily forgotten 
• Sometimes incomplete 

• A program specification 
• Formulated - written 
• Well-considered and agreed upon 
• Formal or informal 
• Part of the program 

 

At the time the program is written, it may be tempting to rely on the comprehension and specification in the 
mind of the programmer. It is not difficult to understand, however, that such a specification is volatile. The 
specification may slide away from the original understanding, or it may totally fade away. In a software 
house it may also easily be the case that the programmer is replaced. Of these reasons it is attractive to base 
correctness on written and formal specifications. 

In the following section we will discuss written and formal specifications that are based on mathematical 
grounds. 

  

49.3.  Specifications 
Lecture 13 - slide 4 

We will introduce the following straightforward definition of a specification: 

 A program specification is a definition of what a computer program is expected to do 
[Wikipedia]. 

What - not how.  

 

Notice that specifications answer what questions, not how questions. 

In the area of formal mathematically-oriented specifications, the following two variants are well-known: 

 • Algebraic specifications 
• Equations that define how certain operations work on designated constructors 

• Axiomatic specifications 
• Logical expressions - assertions - associated with classes and operations 
• Often divided into invariants, preconditions, and postconditions 
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We will first study an algebraic specification of a stack, see Program 49.1. We have already encountered this 
specification earlier in the material, namely in the context of our discussion of abstract data types in Section 
1.5. From line 4-11 we declare the syntax of the operations that work on stacks. The operations are 
categorized as constructors, destructors, and selectors. As the name suggests, constructors are operations that 
constructs a stack. Both push and pop are functions that return a stack. This is different from the imperative 
stack procedures we experienced in Program 30.1, which mutate the stack without returning any value. 

An arbitrary stack can be constructed in terms of one or more constructors. Destructors are operations that 
work on stacks. (The term "destructor" may be slightly misleading). Any stack can be constructed without 
use of destructors. As an example, the expression pop(push(5, pop (push (6, push (7, new ()))))) is 
equivalent with push(7, new ()). The selectors extract information about the stack. 
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Type stack [int] 
  declare 
   constructors 
    new () -> stack; 
    push (int, stack) -> stack; 
   destructors 
    pop (stack) -> stack; 
   selectors 
    top (stack) -> int; 
    isnew (stack) -> bool; 
  for all 
   i in int; 
   s in stack; 
  let 
   pop (new()) = error; 
   pop (push (i,s)) = s; 
   top (new()) = error; 
   top (push (i,s)) = i; 
   isnew (new()) = true; 
   isnew (push(i,s)) = false; 
  end 
end stack. 

  Program 49.1    An algebraic specification of a stack.   

The lines 12-21 define the meaning (also known as the semantics) of the stack. It tells us what the concept of 
a stack is all about. The idea is to define equations that express how each destructor and each selector work 
on expressions formulated in terms of constructors. The equation in line 16 specifies that it is an error to pop 
the empty stack. The equation in line 17 specifies that pop applied on stack s on which we have just pushed 
the integer i is equivalent with s. Please consider the remaining equations and make sure that you understand 
their meaning relative to your intuition of the stack concept. 

The specification in Program 49.1 tells us what a stack is. It is noteworthy that the specification in Program 
49.1 defines the stack concept without any binding to a concrete representation of a stack. The specification 
gives very little input to the programmer about how to implement a stack with use of a list or an array, for 
instance. A good specification answers what questions, not how questions. 

If you wish to see other similar specifications of abstract datatypes, you may review our specifications of 
natural numbers and booleans in Program 1.9 and Program 1.10 respectively. 

Below, in Program 49.2 we show an axiomatic specification of a single function, namely the square root 
function. An axiomatic specification is formulated in terms of a precondition and a postcondition. The 
precondition specifies the prerequisite for activation of the square root function. It states that it is only 
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possible to calculate the square root of non-negative numbers. The precondition constrains the output of the 
function. In case of the square root function, the square of the result should be very close to the input. 

1 
2 
3 
4 
5 

sqrt(x: Real) -> Real 
 
  precondition: x >= 0; 
 
  postcondition: abs(result * result - x) <= 0.000001 

  Program 49.2    An axiomatic specification of the squareroot 
function.  

 

In the rest of this lecture we will study object-oriented programming, in which methods can be specified with 
preconditions and postconditions. 
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50.  Specification with preconditions and 
postconditions 
As exemplified at the end of the previous chapter, preconditions and postconditions can be used to specify 
the meaning of a function. In this chapter we will study preconditions and postconditions in more details. 

  

50.1.  Logical expressions 
Lecture 13 - slide 6 

Logical expressions and assertions form the basis of preconditions and postconditions. Consequently, we 
define the concepts of logical expressions and assertions before preconditions and postconditions: 

 A logical expression is an expression of type boolean 

An assertion is a logical expression, which, if false, indicates an error [Foldoc] 

A precondition of an operation is an assertion which must be true just before the operation is 
called 

A postcondition of an operation is an assertion which must be true just after the operation has 
been completed  

 

We have worked with logical expressions numerous times during this course. Logical expressions are formed 
by relational, equational, conjunctional (and) and disjunctional (or) operators. You find these operators at 
level 3, 4, 8, and 9 in Table 6.1. 

Assertions are also used in the context of program testing. In Section 55.7 we surveyed a large collection of 
assertions, which are available in the NUnit testing tools for C#. As stated in Section 55.8, an assertion in a 
test case, which returns the value false, causes a failure. A failed testcase signals that the unit under test is 
incorrect. Assertions used in test cases are similar to assertions found in postconditions. 

We can now characterize a precondition in the following way: 

 • A precondition states if it makes sense to call an operation 
• The precondition is a prerequisite for the activation 

 

The precondition is typically formulated in terms of the formal parameters of the operation. 

Similarly, a postcondition can be characterized as follows: 

 • A postcondition states if the operation returns the desired result, or has the desired effect, relative 
to the given parameters that satisfy the precondition 

• The postcondition defines the meaning of the operation 
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The postcondition of a procedure or function F must be fulfilled if the precondition of F holds, and if F 
terminates (F runs to its completion). 

  

50.2.  Examples of preconditions and postconditions 
Lecture 13 - slide 7 

We will now study preconditions and postconditions of the operations in a circular list. A circular list is a 
linked list, in the sense we discussed in Section 45.14. However, the circular list discussed in this section is 
only single-linked. The distinctive characteristics of a circular list are the following:  

1. The last LinkedListNode is linked to the first LinkedListNode of the list 

2. The CircularList object refers to the LinkedListNode of the last element instead of the 
LinkedListNode of the first element. 

We show a circular list with five elements in Figure 50.1. The idea of referring the last element instead of the 
first element from the CircularList object means that both the front and the rear of the list can be reached 
in constant time. In many context, this is a very useful property. Notice also, that it is possible to deal with 
double-linked circular lists as well. 

 
Figure 50.1    A circular list. The large yellow object represents the circular list as 
such. The circular green nodes represent the elements of the list. The rectangular 
nodes are instances of a class akin to LinkedListNode, which connect the 
constituents of the list together.  

Below we specify the operations of the circular list with preconditions and postconditions. The specification 
in Program 50.1 defines the meaning of operations of the yellow object in Figure 50.1. In the program listing, 
the preconditions are marked with keyword require, and shown in red. The postconditions are marked with 
the keyword ensure, and shown in blue. The names of the keywords stem from the object-oriented 
programming language Eiffel [Meyer97, Meyer92, Switzer93], which is strong in the area of assertions. 
Apart from that, the syntax used in Program 50.1 is C# and Java like. 

1 
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class CircularList { 
 
  // Construct an empty circular list  
  public CircularList() 
    require true;   
    ensure Empty();   
 
  // Return my number of elements  
  public int Size() 
    require true;   
    ensure size = CountElements() && noChange;   
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  // Insert el as a new first element  
  public void InsertFirst(Object el) 
    require !Full();   
    ensure !Empty() && IsCircular() && IsFirst(el);   
      
  // Insert el as a new last element  
  public void InsertLast(Object el) 
    require !Full();   
    ensure !Empty() && IsCircular() && IsLast(el);   
 
  // Delete my first element  
  public void DeleteFirst() 
    require !Empty();   
    ensure  
      Empty() ||  
      (IsCircular() && IsFirst(old RetrieveSecond()));   
 
  // Delete my last element  
  public void DeleteLast() 
    require !Empty();   
    ensure  
      Empty() ||  
      (IsCircular() && isLast(old RetrieveButLast()));   
 
  // Return the first element in the list  
  Object RetrieveFirst() 
    require !Empty();   
    ensure IsFirst(result) && noChange;   
 
  // Return the last element in the list  
  Object RetrieveLast() 
    require !Empty();   
    ensure IsLast(result) && noChange;   
} 

  Program 50.1    Circular list with preconditions and 
postconditions.  

 

The precondition true of the constructor says that there are no particular requirements to call the constructor. 
This is natural and typical. The postcondition of the constructor expresses that the constructor makes an 
empty circular list. 

The operation Size returns an integer corresponding to the counted number of elements in the list. 
CountElements is an operation, which counts the elements in the list. In a particular implementation of 
CircularList, the operation Size my return the value of a private instance variable which keeps track of the 
total number of elements in the list. nochange is a special assertion, which ensures that the state of the list 
has not changed due the execution of the Size operation. We see that the postcondition expresses the 
consistency between the value returned by Size, and the counted number of elements in the list. 

The operation InsertFirst is supposed to insert an element, to become the first element of the list (the one 
shown at the left hand side of Figure 50.1). The precondition expresses that the list must not be full before 
the insertion. The postcondition expresses that the list is not empty after the insertion, that it is still circular, 
and that el indeed is the first element of the list. The specification of the operation InsertLast is similar to 
InsertFirst. 

The operation DeleteFirst requires as a precondition a non-empty list. The postcondition of DeleteFirst 
expresses that the list either is empty or circular. If the list is non-empty (and therefore circular) after the 
deletion, the second element before the deletion must be the first element after the deletion. Notice the 
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modifier old. The value of Old(expression) is the value of expression, as evaluated in the state just 
before the current operation is executed. DeleteLast is symmetric to DeleteFirst. 

RetrieveFirst returns the first element of the list. The precondition of RetrieveFirst says that the list 
must be non-empty in order for this operation to make sense. The postcondition says that the result is indeed 
the first element, and that RetrieveFirst is a pure function (it does not mutate the state of the circular list). 
RetriveLast is symmetrical to RetrieveFirst. 

What about the operations Empty, Full, CountElements, IsCircular, IsFirst, IsLast, RetrieveSecond, 
and RetrieveButLast? They are intended to be auxiliary, public boolean operations in the circular list. In an 
implementation of CircularList we must implement these operations. They are supposed to be 
implemented as simple as possible, and they are not supposed to carry preconditions and postconditions. In 
order to be operational (meaning that the specification can be confirmed at run-time) these auxiliary 
operations be must be implemented. Nothing comes for free! In reality, we check the consistency between 
the operations listed in Program 50.1 and the auxiliary boolean operations. An inconsistency reveals an error 
in either the circular list operations, or in the auxiliary operations. The necessary auxiliary operations are 
typically much simpler than the circular list operations, and therefore an inconsistency most often will reveal 
an error in the way we have implemented a circular list operation. 

 

 50.3.  An Assertion Language 
Lecture 13 - slide 8 

We are now about to focus on the language in which we formulate the assertions (preconditions and 
postconditions). In the previous section we have studied examples, in which we have met several features in 
the assertion language. 

As it will appear, we are pragmatic with respect to the assertion language. The reason is that we allow 
programmed, boolean functions to be used in the assertion language. These boolean function are siblings to 
the functions that we are about to specify. 

It is an important goal that the preconditions and the postconditions should be checkable at program 
execution time. Thus, the it should be possible and realistic to evaluation the assertions at run-time. 

The following items characterize the assertions language: 
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 • Logical expressions - as in the programming language 
• Programmed assertions - via boolean functions of the programming language 

• Should be simple functions 
• Problems if there are errors in these 

• Universal ("for all...") and existential ("there exists...") quantifiers 
• Requires programming - iteration - traversal 
• It may be expensive to check assertions with quantifiers 

• Informal assertions, written in natural language 
• Cannot be checked 
• Much better than nothing 

• Special means of expression 
• old Expr - The value of the expression at the beginning of the operation 
• nochange - A simple way to state that the operation has not changed the state of the 

object 

 

Use of universal and existential quantifiers, known from mathematical formalisms, makes it hard to check 
the assertions. Therefore such means of expressions do not exist directly in the assertion language. If we 
wish to express for all ... or there exists ... it must be programmed explicitly in boolean functions. 

We may easily encounter elements of a specification that we cannot (or will no) check by programmed 
exceptions. It may be too expensive, or too complicated to program boolean functions which represent these 
elements. In such situations we may wish to fall back on informal assertions, similar to comments. 

  

50.4.  References 
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[Meyer97] Bertrand Meyer, Object-oriented software construction, second edition. Prentice Hall, 
1997.  
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51.  Responsibilities and Contracts 

This section is about responsibilities and contracts, and their connection to preconditions and postconditions. 
Recall from Section 2.2 in the initial lecture that we already touched on responsibilities in the slipstream of 
the pizza delivery example, see Figure 2.1. At the end of the chapter, in Section 51.8 we briefly discuss 
Design by Contract, which broadens the scope for applicability of contracts in the development process. 

  

51.1.  Division of Responsibilities 
Lecture 13 - slide 10 

A class encapsulates some description of state, and some operations. A subset of the operations make up the 
interface between the class and other classes. All together, the class manages a certain amount of 
responsibility. Internally, the class is responsible for keeping the state consistent and sound. Externally, the 
operations of the class are responsible for delimitation of the messages that they handle, and the quality of 
the work (results) the operations deliver. 

It is bad if a class is irresponsible. Class irresponsibility may occur if a pair classes both expect the other 
class to be responsible. 

It is also bad if a class is too responsible. A pair of over-responsible classes redundantly care about the same 
properties. This is not necessary, and it bloats the amount of program lines in the implementation of the 
classes. 

This leads us to the essence of this and the following sections, namely division of responsibilities. Let us first 
enumerate the consequences of well-defined and ill-defined division of responsibilities: 

 • Without well-defined division of responsibilities 
• All classes accept a large responsibility 
• All program parts check all possible conditions (defensive programming) 
• Makes a large program even larger 

• With well-defined division of responsibilities 
• Operations can safely operate under given assumptions 
• It is well-defined which parts should check which conditions 
• Simplifies the program 

 

  

51.2.  The highly responsible program 
Lecture 13 - slide 11 

Before we proceed to the role of preconditions and postconditions in relation to responsibility, we will study 
an example of an object-oriented program with two classes that altogether are over-responsible. 

We make our points with yet another version of class BankAccount, see Program 51.2, in relation to a client 
of class BankAccount, see Program 51.1. As you will realize below, the illustration of over-responsibility is 
slightly exaggerated in relation to a real-life program. 
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The Main method in Program 51.1 withdraws and deposits money on the bank account referred by the 
variable ba, which is declared and initialized in line 5. Before withdrawing money in line 8, Main checks the 
soundness of the account (with AccountOK), and it checks if there are enough money available. After the 
withdrawal Main checks if the account is still sound. It also deals with the situation where Main withdraws an 
amount of money, which is greater then the balance of the account. Similar observations apply to Deposit in 
line 19. 
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public class Client{ 
 
  public static void Main(){ 
 
    BankAccount ba = new BankAccount("Peter"); 
 
    if (ba.AccountOK && ba.EnoughMoney(1000)) 
      ba.WithDraw(1000); 
    else 
      WithdrawingProblems("..."); 
    if (!ba.AccountOK) 
      MajorProblem("..."); 
    if (ba.Balance <= 0) 
      BankAccountOverdrawn(ba); 
 
    ... 
   
    if (ba.AccountOK) 
      ba.Deposit(1500); 
    if (!ba.AccountOK) 
      MajorProblem("..."); 
 
  } 
} 

  Program 51.1    Excerpt of highly responsible class Client of 
BankAccount.  

 

In class BankAccount below, the Withdraw method in line 9-16 check the soundness of the bank account, 
and it deals with insufficient funds, before the actual withdrawal takes place in line 15. 

The Deposit method in line 18-24 cares about the situation where clients deposit very large amounts. In 
such cases the bank account attempts to check if the money comes from illegal or criminal sources. 
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public class BankAccount { 
 
   private double interestRate; 
   private string owner; 
   private double balance; 
 
   // ... 
 
   public void Withdraw (double amount) { 
      if (!AccountOK) 
        ComplainAboutNonValidAccount(); 
      else if (!this.EnoughMoney(amount)) 
        ComplainAboutMissingMoney(); 
      else 
        balance -= amount; 
   } 
 
   public void Deposit (double amount) { 
      if (amount >= 10000000) 
        CheckIfMoneyHaveBeenStolen(); 
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      else if (!AccountOK) 
        ComplainAboutNonValidAccount(); 
      alse balance += amount; 
   } 
} 

  Program 51.2    Excerpt of highly responsible class 
BankAccount.  

 

Seen altogether, the amount of code in Program 51.1 and Program 51.2 is much larger than desired. The 
checks that happen more than once should be eliminated. In addition, some of the responsibilities should be 
delegated to third party objects. 

  

51.3.  Responsibility division by pre and postconditions 
Lecture 13 - slide 12 

Preconditions and postconditions can be used to divide the responsibility between classes in an object-
oriented program. The idea is to make it the responsibility of particular objects to fulfill the precondition of a 
method, and to make it the responsibility of other objects to fulfill the postcondition of a method. The rules 
are as follows: 

 • Fulfillment of the precondition 
• The responsibility of the caller 
• The responsibility of the client in an object-oriented program 

• Fulfillment of the postcondition 
• The responsibility of the called operation 
• The responsibility of the server in an object-oriented program 

 

Client and server are roles of objects relative to the message passing in between them. The client and server 
roles were discussed in Section 2.1. In some books, the server is called a supplier. 

Let us recall the precondition and the postcondition of the square root function sqrt, as shown in Program 
49.2. A function that calls sqrt is responsible to pass a non-negative number to the function. If a negative 
number is passed, the square root function should do nothing at all to deal with it. If, on the other hand, a 
non-negative number is passed to sqrt, it is the responsibility of sqrt to deliver a result which fulfills the 
postcondition. Thus, the caller of sqrt should do nothing at all to check or rectify the result. 

Now we know who to blame if an assertion fails: 

 Blame the caller if a precondition of an operation fails 

Blame the called operation if the postcondition of an operation fails 
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51.4.  Contracts 
Lecture 13 - slide 13 

In everyday life, a contract is an enforceable agreement between two (or more) parties. Often, contracts are 
regulated by law. In relation to programming in general, we define a contract in the following way: 

 A contract expresses the mutual obligations in between parts of a program that cooperate about 
the solution of some problem  

 

In object-oriented programming it is natural that the program parts are classes. 

The preconditions and the postconditions of the public methods in a class together form a contract between 
the class and its clients. 

It can be a serious matter if a contract is broken. A broken contract is tantamount to an inconsistency 
between the specification and the program, and it is usually interpreted as an error in the program. The error 
is usually fatal. A broken contract should raise and throw an exception. Unless the exception is handled, the 
broken contract will cause the program to stop. 

  

51.5.  Everyday Contracts 
Lecture 13 - slide 14 

 Contracts are all around us in our everyday life 
 

 

When we do serious business in our everyday life, we are very much aware of contracts. When we accept a 
new job or when we buy a house, the mutual agreement is formulated in a contract.  

Below we list some additional everyday contracts: 

 • Student and University 
• The student enrolls some course 
• The university offers a teacher, a room, supervision and other resources 

• Citizen and Tax office 
• The citizen does a tax return 
• The tax office calculates the taxes, and regulates the paid amount of money 

• Football player and Football club 
• The player promises to play 50 games per season 
• The football club pays 10.000.000 kroner to the player pr. month 

• Citizen and Insurance company 
• The insurance holder pays the insurance and promises to avoid insurance fraud 
• In case of a damage or accident, the insurance company pays compensation 
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51.6.  Contracts: Obligations and Benefits 
Lecture 13 - slide 15 

Contracts in object-oriented programs, specified by preconditions and postconditions of certain methods, 
express obligations and benefits.  

In Figure 51.1 we personalize the obligations and benefits of a client and server. In the context of Figure 51.1 
the server is called a supplier. This terminology, as well as the syntax used in the illustration, come from the 
object-oriented programming language Eiffel [Meyer97, Meyer92, Switzer93]. 

 
Figure 51.1    A give-and-take situation involving a client and a server (supplier) 
class.  

The Client, shown to the right in Figure 51.1 must make an effort to arrange, that everything is prepared for 
calling opSupplier in the class Supplier. These efforts can be enjoyed by the supplier, because he can take 
for granted that required precondition of opSupplier is fulfilled. 

The roles are shifted with respect to the rest of the game. The supplier must make an effort to ensure that the 
postcondition of opSupplier is fulfilled when the operation terminates. This reflects the fact the operation 
has done the job, as agreed on in the contract. In return, the client can take for granted that the opposite party 
(the supplier) delivers an appropriate and correct result. 

The obligations and benefits of the contract can be summarized as follows: 

 Obligation - May involve hard work 

Benefit - A delight. No work involved 
 

 

If you feel that the discussion in this section is too abstract, we will rephrase the essence in the next section 
relative to the squareroot function. 
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51.7.  Obligations and Benefits in Sqrt 
Lecture 13 - slide 16 

In Program 49.2 of Section 49.3 we exemplified axiomatic specifications with a squareroot function. Let us, 
of convenience, rephrase the specification here. 

1 
2 
3 
4 
5 

sqrt(x: Real) -> Real 
 
  precondition: x >= 0; 
 
  postcondition: abs(result * result - x) <= 0.000001 

  Program 51.3    An axiomatic specification of the squareroot 
function.  

 

The obligations and benefits of sqrt, relative to its callers, are summarized in the following table: 

- Obligation Benefit 

Client Must pass a non-negative number Receives the squareroot of the input 

Server Returns a number r for which r * r = x Take for granted that x is non-negative 

Table 51.1    A tabular presentation of the obligations and benefits of the 
squareroot function (in a server role) and its callers (in a client role). 

Notice in particular the obligation of the client and the benefit of the server, as emphasized using the red 
color in the table. 

  

51.8.  Design by Contract 
Lecture 13 - slide 27 

As presented in Section 51.4, a contract of a class is the sum of the assertions in the class. Thus, a contract is 
formed by concrete artifacts in the source program. 

As part of the Eiffel efforts [Meyer97, Meyer92, Switzer93], the use and benefits of contracts have been 
broadened such that contracts affects both design, implementation, and testing. The broad application of 
contract is known as Design by Contract (DBC). Design by Contract is a trademark of the company Eiffel 
Software, and as such it may be problematic to use the term, at least in commercial contexts.  

 Design by ContractTM (DBC) represents the idea of designing and specifying programs by means 
of assertions 

 

 

The following summarizes the use of contracts in the different phases of the software development process, 
and beyond. 
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 • Design: A pragmatic approach to program specification 
• Documentation: Adds very important information to interface documentation of the classes 
• Implementation: Guides and constrains the actual programming 
• Verification: The program can be checked against the specification every time it is executed 
• Test:  

• Preconditions limit the testing work 
• The check of postconditions and class invariants do part of the testing work 

• End use: Trigger exception handling if assertions are violated 

 

The use of contracts for design purposes is central. The contract of a planned class serves as the specification 
of the class. We have discussed program specifications in Section 49.3 of this material. 

Interface documentation - as pioneered by JavaDoc - includes signatures of methods and informal 
explanations found in so-called documentation comments. It is very useful to include both preconditions, 
postconditions, and class invariants in such documentation. 

During program execution - both in the testing phase and in the end use phase - the actual state of the 
program execution can be compared with the assertions. As such, it is possible to verify the implementation 
against the specification at program run-time. If an inconsistency is discovered during testing, we have 
located an error. This is always a pleasure and a success. If an inconsistency is discovered during end use, an 
exception is thrown. This is clearly less successful. Exceptions have been treated in Chapter 33 - Chapter 36 
of this material. 
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52.  Class Invariants 

In this chapter we will study yet another kind of assertions called class invariants. The class invariant serves 
as a strengthening of both the preconditions and the postconditions of all operations in the class. As we will 
see in the first section of this chapter, a good class invariant makes it easier to formulate both preconditions 
and postconditions of the operations in the class.  

  

52.1.  General aspects of contracts 
Lecture 13 - slide 18 

When we do computations in general, the values of the variables in the running programs are modified 
throughout the computation. In an object-oriented program the states of the involved objects will vary as the 
program execution progresses. This variation of the program state is not arbitrary, however. There is usually 
some rules that control and constrain the variations. Such rules can be formulated as invariants. An invariant 
describes some properties and relationships that remain constant (do not vary) during the execution of a 
program.  

A class invariant is an assertion that captures the properties and relationships, which remain stable 
throughout the life-time of instances of the class. 

 A class invariant expresses properties of an object which are stable in between operations 
initiated via the public client interface  

 

The following characterizes a class invariant: 

 • acts as a general strengthening of both the precondition and postcondition 
• expresses a "health criterion" of the object  
• must be fulfilled by the constructor 
• must be maintained by the public operations 
• must not necessarily be maintained by private and protected operations 

 

The class invariant is an assertion, which should be true at every stable point in time during the life of an 
object. In this context, a stable point in time is just after the completion of the constructor and in between 
executions of public operations on the class. At a stable point in time, the object is in rest - the object is not 
in the middle of being updated. The unstable points in time are, for instance, in the middle of the execution 
of a constructor, or in the middle of the execution of a public operation. In addition, a non-public operation 
may leave the object in a state, which does not satisfy the class invariant. The reason is that a public 
operation may need to activate several non-public operations, and it may need to carry out additional state 
changes (assignments) in order to reach a stable state that satisfies the class invariant. A non-public operation 
may be responsible for only a fraction of the updating of an object. 

You can think of the class invariant as a health criterion, which must be fulfilled by all objects in between 
operations. As a precondition of every public operation of the class, it can therefore be assumed that the class 
invariant holds. In addition, it can be assumed as a postcondition of every public operation that the class 
invariant holds. In this sense, the class invariant serves as a general strengthening of both the precondition 
and the postcondition of public operations in the class. The effective precondition is the formulated 
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precondition in conjunction with the class invariant. Similarly, the effective postcondition is the formulated 
postcondition in conjunction with the class invariant. 

 A class invariant expresses some constraints that must be true at every stable point in time 
during the life of an object 

 

 

Our primary interest in this chapter is class invariants. Invariants are, however, also useful and important in 
other contexts. 

  

52.2.  Everyday invariants 
Lecture 13 - slide 19 

Before we proceed to a programming example, we will draw the attention to useful everyday invariants. 

 • Coffee Machine 
• In between operations there is always at least one cup of coffee available 

• Toilet 
• In between "transactions" there is always at least 0.75 meter of toilet paper on the roll 

• Keys and wallet 
• In between using keys and/or wallet 

• During daytime: Keys and wallet are in the pocket 
• During nighttime: Keys are wallet are located on the bedside table or underneath 

the pillow 

 

The coffee machine invariant ensures that nobody will go for coffee in vain. If you happen to fill your jug 
with the last cup of coffee from the coffee pot, your operation on the coffee machine is not completed until 
you have brewed a new pot of coffee. 

The toilet paper invariant should be broadly appreciated. As a consequence of the invariant, the operation of 
emptying the toilet paper reel is not completed before you have found and mounted an extra, full reel of 
paper. 

The last everyday invariant is - in my experience - often broken by women and children, because they do not 
always wear practical cloth with pockets suitable for wallets and keys. As a consequence, these important 
items tend to be forgotten or misplaced, such that they are not available when needed. If the proposed key 
and wallet invariant is observed, you either use the key or wallet, or you will be confident where to find them. 

 Adherence to invariants is the key to order in our daily lives 
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52.3.  An example of a class invariant 
Lecture 13 - slide 20 

It is now time to study the invariant of the circular list. Recall that we introduced preconditions and 
postconditions of the circular list in Program 50.1 of Section 50.2. 

The class invariant of a circular lists expresses that the list is circular whenever it is non-empty. In Program 
52.1 the invariant is formulated at the bottom of the program, in line 43-45. In the same way as the 
preconditions and postconditions, the class invariant involves subexpressions that are realized by 
programmed operations (empty, isCircular, and size) of the class. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
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class CircularList { 
 
  // Construct an empty circular list  
  public CircularList() 
    require true;    
    ensure empty();    
 
  // Return my number of elements  
  public int size() 
    require true;    
    ensure (size = countElements) && noChange;    
 
  // Insert el as a new first element  
  public void insertFirst(Object el) 
    require !full();    
    ensure !empty() && isFirst(el);    
      
  // Insert el as a new last element  
  public void insertLast(Object el) 
    require !full();    
    ensure !empty() && isLast(el);      
 
  // Delete my first element  
  public void deleteFirst() 
    require !empty();    
    ensure (empty() || isFirst(old retrieveSecond));    
 
  // Delete my last element  
  public void deleteLast() 
    require !empty();    
    ensure (empty() || isLast(old retrieveButLast()));    
 
  // Return the first element in the list  
  Object retrieveFirst() 
    require !empty();    
    ensure isFirst(result) && noChange;    
 
  // Return the last element in the list  
  Object retrieveLast() 
    require !empty();    
    ensure isLast(result) && noChange;    
 
  invariant 
    !empty() implies isCircular()  and 
    empty() implies (size() = 0);    
} 

  Program 52.1    Circular list with a class invariant.   
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If we compare Program 52.1 with Program 50.1 it is worth noticing that the preconditions and postconditions 
become simpler and shorter, because they implicitly assumes that the class invariant is true. Thus, relative to 
(a slightly idealised version of) Program 50.1, the invariant is factored out of all preconditions and 
postconditions. 
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53.  Inheritance is Subcontracting 

In this chapter we will review inheritance - including specialization - in the light of contracts. Specialization 
was discussed in Chapter 25 and inheritance was discussed in Chapter 27. The concept of contracts was 
introduced in Chapter 51. 

Stated briefly, we understand a subclass as a subcontractor of its superclass. Being a subcontractor, it will 
not be possible to carry out arbitrary redefinitions of operations in a subclass, relative to the overridden 
operations in the superclass. 

  

53.1.  Inheritance and Contracts 
Lecture 13 - slide 22 

The following question is of central importance to the discussion in this chapter. 

 How do the assertions in a subclass relate to the similar assertions in the superclass? 
 

 

Figure 53.1 illustrates a class B which inherits from class A. Both class A and B have invariants. In addition, 
operations in class A that are redefined in class B have preconditions as well as postconditions. 

 
Figure 53.1    The relationship between inheritance and contracts 

The question from above can now to refined as follows: 

• How is the invariant in class B related to the invariant of class A? 

• How is the precondition of the operation op in class B related to the precondition of the overridden 
operation op from class A? 

• How is the postcondition of the operation op in class B related to the postcondition of the overridden 
operation op from class A? 

Each of the three questions are symbolized with a red question mark in Figure 53.1. 
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53.2.  Subcontracting 
Lecture 13 - slide 23 

Due to polymorphism, an instance of a subclass can act as a stand in for - or subcontractor of - an instance of 
the superclass. Consequently, the contract of the subclass must comply with the contract of the superclass. 
The contract of a subclass must therefore be a subcontract of the superclass' contract. This is closely related 
to the principle of substitution, which we discussed in Section 25.7. 

The notion of subcontracting is realized by enforcing particular requirements to preconditions, 
postconditions, and class invariants across class hierarchies. In order to understand inheritance as 
subcontracting, the following rules must apply for assertions in a subclass: 

 • The precondition must not be stronger than the precondition in the superclass 
• The postcondition must not be weaker than the postcondition in the superclass 
• The class invariant must not be weaker than the invariant in the superclass 

 

As discussed in Section 50.1, a precondition of an operation states the prerequisites for calling the operation. 
If the precondition is evaluated to the value true, the operation can be called. It is the responsibility of the 
caller (the client) to fulfill the precondition. The postcondition of the operation states the meaning of the 
operation, in terms of requirements to the returned value and/or requirements to the effect of the operation. It 
is the responsibility of the operation itself (the server) to fulfill the postcondition. The postcondition must be 
true if the precondition is satisfied and if the operation terminates normally (without throwing an exception). 

If we assume that the precondition of a redefined operation in a subclass is stronger than the precondition of 
the original operation in the superclass, then the subclass cannot be used as a subcontractor of the superclass. 
Consequently, the preconditions of redefined operations in subclasses must be equal to or weaker than the 
preconditions of corresponding operations in superclasses. 

In case the postcondition of a redefined operation in a subclass is weaker than the postcondition of the 
operation in the superclass, the redefined operation does not solve the problem as promised by the contract in 
the superclass. Therefore, the postconditions of redefined operations must be equal to or stronger than the 
postconditions of corresponding operations in superclasses. 

The superclass has promised to solve some problem via the virtual operations. Redefined and overridden 
operations in subclasses are obliged to solve the problem under the same, or possible weaker conditions. This 
causes the weakening of preconditions. The job done by the redefined and overridden operations must be as 
least as good as promised in the superclass. This causes the strengthening of postconditions. 

The invariant of the superclass expresses requirements to instance variables in the superclass, at stable points 
in time. These instance variables are also present in subclasses, and the requirements to these persist in 
subclasses. Consequently, class invariants cannot be be weakened in subclasses. 

Relative to Figure 53.1 the formulated precondition pre-op2 in B.op serves as a weakening of pre-op1 of 
A.op. The effective precondition of B.op is pre-op1 or pre-op2. Similarly, the effective postcondition of 
B.op2 is post-op1 and post-op2. The use of the Eiffel keywords require else and ensure then signals this 
understanding. 

 Operations in subclasses cannot arbitrarily redefine/override operations in superclasses 
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In our discussion of redefinition of methods in Section 28.9 we came up with some technical and syntactical 
requirements to redefinitions. The contributions outlined above in terms of subcontracting constrain the 
meaning (the semantics) of redefined operations in subclasses in relation to the original operations in 
superclasses. This is very satisfactory!  

  

53.3.  Class invariants in the triangle class hierarchy 
Lecture 13 - slide 24 

We studied the specialization hierarchy of polygons in Section 25.5. In Figure 53.1 below we revisit the five 
triangle classes. It is our interest to understand how the class invariants are strengthened in subclasses of the 
most general triangle class. 

 
Figure 53.2    The hierarchy of triangle classes. The root class represents the most 
general triangle. The son to the left represents an isosceles triangle (where to 
sides are of same lengths). The son to the right represents a right triangle, where 
one of the angles is 90 degrees. The triangle at the bottom left is an equilateral 
trianlge (where all three sides are of equal lengths). The triangle at the bottom 
right is both an isosceles triangle and a right triangle.  

The invariants of the five types of triangles can be described as follows: 

• Most general triangle:  
3 angles, 3 edges  
Sum of angles: 180 degrees 

• Isosceles triangle  
Invariant of general triangle  
2 edges of equal length 

• Equilateral triangle:  
Invariant of isosceles triangle  
3 edges of equal length 

• Right triangle:  
Invariant of general triangle  
Pythagoras 

• Isosceles right triangle:  
Invariant of isosceles triangle  
Invariant of right triangle  

Notice that the italic contributions above describe the strengthenings relative to the invariant of the 
superclass. 
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53.4.  Assertions in Abstract classes 
Lecture 13 - slide 25 

Abstract classes where discussed in Section 30.1. An abstract method in an abstract class defines the name 
and parameters of the method - and nothing more. The intended meaning of the method is an informal matter. 
In Chapter 30 we did not encounter any means to define or constrain the actual result or effect of abstract 
methods. In this section we will see how the meaning of an abstract method can be specified. 

In Program 30.1 we studied an abstract class Stack. Below, in Program 53.1 we show a version of the 
abstract stack with contractual elements - preconditions and postconditions. Possible future non-abstract 
subclasses of Stack will be subcontractors. It means that such subclasses will have to fulfill the contract of 
the abstract stack, in the way we have discussed in Section 53.2. 
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using System; 
 
public abstract class Stack{  
   
  abstract public void Push(Object el); 
    require !full;    
    ensure  !empty  &&  top() = el  &&  size() = old size() + 1 && 
            "all elements below el are unaffected";    
 
  abstract public void Pop(); 
    require !empty();    
    ensure  !full()  &&  size() = old size() - 1 && 
            "all elements remaining are unaffected";    
 
  abstract public Object Top 
    require !empty();    
    ensure  nochange  &&  Top = "the most recently pushed element";    {   
    get; } 
 
 
  abstract public bool Full 
    require true;    
    ensure nochange  &&  Full = (size() = capacity);   { 
    get; } 
 
 
  abstract public bool Empty  
    require true;    
    ensure nochange  &&  Empty = (size() = 0);   { 
    get;} 
 
  abstract public int Size 
    require true;    
    ensure nochange  &&  Size = "number of elements on stack";   { 
    get;}    
 
  public void ToggleTop() 
    require size() >= 2;   { 
    if (Size >= 2){ 
      Object topEl1 = Top;  Pop(); 
      Object topEl2 = Top;  Pop(); 
      Push(topEl1); Push(topEl2); 
    } 
    ensure size() = old size() &&  
    "top and element below top have been exchanged"  && 
    "all other elements are unaffected";        
  }    
 
  public override String ToString(){ 
    return("Stack"); 
  } 
} 

  Program 53.1    An abstract class with preconditions and 
postconditions.  

 

As we have seen before, require clauses are preconditions and ensure clauses are postconditions. Notice the 
use of old and nochange, which we introduced in Section 50.2. The "italic strings" represent informal 
preconditions. Alternatively, and more rigidly, we may consider to implement these parts of the assertions as 
private boolean functions. Notice, however, that it would be quite demanding to do so, at least compared 
with the remaining implementation efforts involved. 


